The Passage of Ultrarelativistic Neutralinos through Matter

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

DPG Tagung 2007, Heidelberg

in collaboration with M. Drees

based on hep-ph/0603162

S. Bornhauser (University of Bonn)

Cosmic neutralinos

DPG 2007 1 / 11

S. Bornhauser (University of Bonn)

Experiments...

- have shown the existence of ultra high energy (UHE) cosmic rays with $E \gtrsim 10^{11} \text{ GeV}$
- indicate that most UHE events are caused by protons

Protons with $E \gtrsim 5 \cdot 10^{10}$ GeV lose energy through inelastic scattering:

$$p + \gamma_{2.7K} \rightarrow n + \pi^+$$
 proton energy loss
 $\rightarrow p + \pi^\circ \implies$ length $\sim 50 \text{ Mpc} \implies$ local sources

Problems:

- there are no known local sources
- arrival directions of UHE are homogeneously distributed
- existence of objects which have sufficiently large B · L

One possible solution: Top-Down Models (TDMs)

- existence and decay of very massive, long-lived X-particles $(M_X > 10^{12} GeV) \Rightarrow$ UHE events
- X-particles could be associated with a Grand Unified Theory

Signature for Top-Down Models

Decay chain in the framework of R-parity conserving SUSY:

S. Bornhauser (University of Bonn)

Possible measurement method for $\tilde{\chi}_1^0$:

Necessary tools:

- calculation of total & differential cross section (⇒ hep-ph/0603162)
- solution of the transport equations
- calculation of event rates

S. Bornhauser (University of Bonn)

Cosmic neutralinos

Transport equation for s-channel scattering (bino-dominated $\tilde{\chi}_{1}^{0}$) $\frac{\partial F_{\tilde{\chi}_1^0}(E,X)}{\partial X}$ $-\frac{F_{\tilde{\chi}_1^0}(E,X)}{\lambda_{\tilde{\chi}_1^0}(E)}+\frac{1}{\lambda_{\tilde{\chi}_1^0}(E)}\int_0^{y_{\max}}\frac{dy}{1-y}K_s(E,y)F_{\tilde{\chi}_1^0}(E_y,X)\,,$ increase due to $\tilde{\chi}_1^0 + q_i \rightarrow \tilde{\chi}_1^0 + q_i$ decrease $F_{\tilde{\chi}_{1}^{0}}(E,X)$: differential $\tilde{\chi}_{1}^{0}$ flux where E: $\tilde{\chi}_1^0$ energy and mSUGRA scenario with $m_{\tilde{a}} > m_{\tilde{a}} \Longrightarrow$ X: matter depth. $\lambda_{\tilde{\chi}_{1}^{0}}(E)^{-1} = N_{A}\sigma_{\tilde{\chi}_{N}^{0}N}^{\text{tot}}(E)$: interaction length $\sigma_s^{\text{tot}}(\tilde{\chi}_1^0 + q_i \rightarrow X) \approx$ $\sigma_{s}^{\text{tot}}(\tilde{\chi}_{1}^{0}+q_{i}\rightarrow\tilde{\chi}_{1}^{0}+q_{i})$ $K_s(E, y) = \sigma_s^{\text{tot}}(E)^{-1} d\sigma_s(E_y) / dy$: kernel $E_{v}: E/(1-y)$

Solution method...

based on the first order Taylor expansion:

$$F_{ ilde{\chi}_1^0}(E,X+dX) = F_{ ilde{\chi}_1^0}(E,X) + dX rac{\partial F_{ ilde{\chi}_1^0}(E,X)}{\partial X} + \cdots$$
 where

the boundary condition $F_{\tilde{\chi}_1^0}(E,0)$ is given by the incident $\tilde{\chi}_1^0$ flux (e.g. SHdecay: hep-ph/0211406).

Check of the results:

For s- and t-channel:
$$\tilde{\chi}_1^0 + q_i \to \cdots \to \tilde{\chi}_1^0 + X$$

 $\implies \Phi_{\tilde{\chi}_1^0} = \int_{m_{\tilde{\chi}_1^0}}^{E_{\text{max}}} F_{\tilde{\chi}_1^0}(E, X) = \text{const.}$

•
$$F_{ ilde{\chi}^0_1}(E,0) = 0$$
 for $E > E_{max}$

independent of X

Transport equation for *s*-channel scattering (bino-dominated $\tilde{\chi}_1^0$)

Transport equation for t-channel scattering (higgsino-dominated $\tilde{\chi}_1^0$)

x_{max} : maximal column depth of the earth

(integrated from 10⁵ to 10¹² GeV)

Event rates...

can be calculated with the help of $F_{\zeta 0}(E, X)$. For the s-channel:

$$N = \int_{E_{\min}}^{E_{\max}} dE_{vis} \int_{X_{\min}}^{X_{\max}} dX \int_{0}^{y_{\max}} \frac{dy}{y} \frac{d\sigma_s(\frac{E_{vis}}{y})}{dy} F_{\tilde{\chi}_1^0}(\frac{E_{vis}}{y}, X) V_{eff} \epsilon_{dc} t$$

 V_{eff} : w.e. effective volume ϵ_{dc} : duty cycle

t: measurement period

Event rates s-channel					
$E_{ ilde{\chi}_1^0} \geq 10^6~{ m GeV},m_X = 10^{12}~{ m GeV}$			N _{D1}	N_{D2}	N _{D3}
$q\bar{q}$		0	0.0176	0.0175	0.0110
qq̃		0	0.0405	0.0440	0.0324
Ï		0	.1067	0.1487	0.1460
5 imes q ilde q		0	.4091	0.4168	0.2719
	Event rates t-channel				
	Event rates t-cha	nn	el		٩
	Event rates t-cha $E_{\tilde{\chi}_1^0} \ge 10^6 \text{ GeV}, m_X = 10^{12} \text{ GeV}$	nn ∕	el $N_{\tilde{\chi}_1^0}$	$N_{ u_{ au}}$	۲
	Event rates t-cha $E_{ ilde{\chi}_1^0} \geq 10^6 ext{ GeV}, m_X = 10^{12} ext{ GeV}$ $q \overline{q}$	nn ∕	el $N_{\tilde{\chi}_1^0}$ 0.51	Ν _{ντ} 0.36	•
	Event rates t-cha $E_{\tilde{\chi}_1^0} \geq 10^6$ GeV, $m_X = 10^{12}$ GeV $q\bar{q}$ $q\bar{q}$ $q\tilde{q}$	nn /	el $N_{\tilde{\chi}_1^0}$ 0.51 1.63	$N_{ u_{ au}}$ 0.36 0.65	•
	Event rates t-cha $E_{\tilde{\chi}^0_1} \ge 10^6$ GeV, $m_X = 10^{12}$ GeV $q\bar{q}$ $q\bar{q}$ $q\tilde{q}$ \tilde{q} \tilde{l}	nn /	el $N_{\tilde{\chi}_1^0}$ 0.51 1.63 23.03		•
	Event rates t-cha $E_{\tilde{\chi}_1^0} \ge 10^6$ GeV, $m_X = 10^{12}$ GeV $q\bar{q}$ $q\bar{q}$ $1\tilde{l}$ $5 \times q\tilde{q}$	nn V	el $N_{\tilde{\chi}_1^0}$ 0.51 1.63 23.03 13.71	$\begin{array}{c} N_{\nu_{\tau}} \\ 0.36 \\ 0.65 \\ 1.31 \\ 4.14 \end{array}$	0 0 0

- integrated from
 10⁶ to 10¹² GeV
- target volume: 1Tt
- m. period: 1y
- duty cycle: 10%
 DPG 2007

07 10<u>/11</u>

Summary:

- there are cosmic rays with $E \gtrsim 10^{11} \text{ GeV}$
- possible explanation within the scope of TDMs
- detection of $\tilde{\chi}^0_1$ would be a "smoking gun" for TDMs
- detection of $\tilde{\chi}^0_1$ might be possible with aid of future satellite experiments