Electroweak Contributions to Squark Pair Production at the LHC

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

DPG08 Freiburg

in collaboration with Manuel Drees, Herbi K. Dreiner and Jong Soo Kim

Phys. Rev. D 76, 095020 (2007)

Electroweak Contributions

- 2 Electroweak Contributions
- 3 Numerical Results

S. Bornhauser (University of Bonn)

< 47 ▶

MSSM particle spectrum

- each SM particle has a superpartner
- add a SU(2)-Higgs doublet with hypercharge Y = -1
- SUSY is not exact⇒have to be broken⇒adding soft-terms
- MSSM has 105 extra free parameters
- in mSUGRA 5 free parameters left ($m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sgn}(\mu)$)

Superfield	Boson Fields	Fermionic Partners	$SU(3)_C$	$SU(2)_L$	<i>U</i> (1) _Y
Ĝ	g	Ĩ	8	0	0
Ŷ	W ^a	Ŵ ^а	1	3	0
Ŷ′	В	Ĩ	1	1	0
Ĺ	$ ilde{L}^{j}=(ilde{ u}, ilde{ extbf{e}})_{L}$	$(\nu, e)_L$	1	2	-1
Ê	$ ilde{ extsf{E}} = ilde{ extsf{e}}_{ extsf{R}}^{*}$	e_R^\dagger	1	1	2
Q	$ ilde{Q}^{j} = (ilde{u}, ilde{d})_{L}$	$(u,d)_L$	3	2	<u>1</u> 3
Û	$ ilde{U} = ilde{u}_{R}^{*}$	u_R^\dagger	3*	1	$-\frac{4}{3}$
D	$ ilde{D} = ilde{d}_R^*$	d_R^\dagger	3*	1	23
$\hat{H}_1 = \hat{H}_d$	H_1^i	$(\tilde{H}_1^0,\overline{\tilde{H}}_1^-)_L$	1	2	-1
$\hat{H}_2 = \hat{H}_u$	H_2^i	$(ilde{H}^+_2, ilde{H}^0_2)_L$	1	2	1

Gaugino Mass Eigenstates

- charginos χ[±]_i, i = 1,2 are linear combination of charged winos and charged higgsinos
- neutralinos χ_i^0 , i = 1, 2, 3, 4 are linear combinations of neutral wino, bino and neutral higgsinos
- gluinos \tilde{g} are mass eigenstates

Squark Pair Production at the LHC

- TeV scale supersymmetry will be decisively tested at LHC
- cross section is $\mathcal{O}(\alpha_s^2)$, e.g.:
 - $m_{\tilde{q}} \approx 1000 \, \text{GeV}$ $\sigma \approx 0.5 \, \text{pb}$ $\mathcal{L} \approx 10 \, \text{fb}^{-1} \, \text{per year}$ $N_{\text{events}} = \mathcal{L} \, \sigma$
- 5000 events are expected at low luminosity

QCD Leading Order Squark Pair Production

S. Bornhauser (University of Bonn)

Electroweak Contributions

Electroweak Contributions, 1st category of interference-terms:

gluino t-channel and neutralino u-channel

interference term:

+(color factor) ×
$$\frac{1}{\hat{t} - m_{\tilde{g}}^2} \frac{1}{\hat{u} - m_{\tilde{\chi}_m^0}^2}$$
 × (product of couplings) × $m_{\tilde{g}} m_{\tilde{\chi}_m^0}$ s

- you need a helicity flip, so \tilde{q} are in s-wave, $\sigma \propto \beta = \sqrt{1 \frac{4m_{\tilde{q}}^2}{\hat{s}}}$
- cross section is sizable due to two valence quarks

S. Bornhauser (University of Bonn)

Electroweak Contributions

Electroweak Contributions, 2nd category of interference terms:

gluino t- and electroweak s-channel

interference term:

$$-(\text{color factor}) \times \frac{1}{\hat{t} - m_{\tilde{g}}^2} \frac{1}{\hat{s} - m_Z^2} \times (\text{product of couplings}) \times f(\hat{s}, \hat{t}, \hat{u}, m_{\tilde{q}}^2)$$

- no helicity flip, so final \tilde{q} are in p-wave, $\sigma \propto \beta^3$
- small cross section due to anti-quark as initial state

Numerical Results

Results

				QCD		QCD + EW		ratio	
Scenario	m_0	<i>m</i> _{1/2}	m _{q̃}	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.0553	0.0132	0.0567	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

Remarks

- EW contribution is more important for SU(2) doublet squarks, due to $\cot^2 \theta_w \approx 3.3$
- EW contribution depend on the ratio $m_{1/2}/m_0$
- EW contribution evidently become more important for heavier squarks if ratio $m_0/m_{1/2}$ remains roughly the same

S. Bornhauser (University of Bonn)

Electroweak Contributions

4.12.2007 10 / 12

- $M_2 \Rightarrow m_{\tilde{\chi}}$ can be negative, change of sign of category 1 i.-t.'s
- maximum of curve is at $M_2 = m_{\tilde{q}}$: $\frac{M_2}{\tilde{t}-M_2^2}$

Summary

- contribution with interference between t- and u-channel is dominant for SU(2)-doublets
- EW effects can reduce or enhance the total cross section by more than a factor of 1.5
- for gaugino mass unification, the enhancement factor is 1.3
- EW contribution might give a new, independent handle on the gaugino mass parameters