The Passage of Ultrarelativistic Neutralinos through Matter

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

SUSY08, Seoul

in collaboration with M. Drees

based on hep-ph/0603162 and 0704.3934

S. Bornhauser (University of Bonn)

Cosmic neutralinos

SUSY08 1/15

S. Bornhauser (University of Bonn)

Experiments...

- have shown the existence of ultra high energy (UHE) cosmic rays with $E\gtrsim 10^{11}~{\rm GeV}$
- indicate that most UHE events are caused by protons

Protons with $E \gtrsim 5 \cdot 10^{10}$ GeV lose energy through inelastic scattering:

$p + \gamma_{2.7K}$	\rightarrow	$n + \pi^+$		proton energy loss	
	\rightarrow	$p + \pi^{\circ}$	\implies	length \sim 50 Mpc	

Questions:

- B.-U. models: are there objects which have sufficiently large B · L?
- are the arrival directions of UHE events homogeneously distributed? ⇒ exclusion of one or a few local point sources
- are there local sources? AUGER indicates correlation between nearby AGNs and the origin of UHE events (arXiv: 0712.2843)

イロト イヨト イヨト

One possible source: Top-Down Models (TDMs)

- existence and decay of very massive, long-lived X-particles $(M_X > 10^{12} GeV) \Rightarrow$ UHE events
- X-particles could be associated with a Grand Unified Theory

Signature for Top-Down Models

Decay chain in the framework of R-parity conserving SUSY:

S. Bornhauser (University of Bonn)

Possible measurement method for $\tilde{\chi}_1^0$:

Necessary tools:

- calculation of total & differential cross section (⇒ hep-ph/0603162)
- solution of the transport equations
- calculation of event rates

S. Bornhauser (University of Bonn)

Cosmic neutralinos

Transport equation for *s*-channel
scattering (bino-dominated
$$\tilde{\chi}_{1}^{0}$$
)
$$\frac{\partial F_{\tilde{\chi}_{1}^{0}}(E,X)}{\partial X} = \underbrace{-\frac{F_{\tilde{\chi}_{1}^{0}}(E,X)}{\lambda_{\tilde{\chi}_{1}^{0}}(E)}}_{\text{decrease}} + \underbrace{\frac{1}{\lambda_{\tilde{\chi}_{1}^{0}}(E)} \int_{0}^{y_{\text{max}}} \frac{dy}{1-y} K_{s}(E,y) F_{\tilde{\chi}_{1}^{0}}(E_{y},X)}_{\text{increase due to } \tilde{\chi}_{1}^{0}+q_{i} \rightarrow \tilde{\chi}_{1}^{0}+q_{i}}$$
$$F_{\tilde{\chi}_{1}^{0}}(E,X): \text{ differential } \tilde{\chi}_{1}^{0} \text{ flux where}$$
$$E: \tilde{\chi}_{1}^{0} \text{ energy and}$$
$$X: \text{ matter depth.}$$
$$\lambda_{\tilde{\chi}_{1}^{0}}(E)^{-1} = N_{A}\sigma_{\tilde{\chi}_{1}^{0}N}^{\text{tot}}(E): \text{ interaction length}$$
$$K_{s}(E,y) = \sigma_{s}^{\text{tot}}(E)^{-1} d\sigma_{s}(E_{y})/dy: \text{ kernel}$$
$$E_{y}: E/(1-y)$$

S. Bornhauser (University of Bonn)

Cosmic neutralinos

SUSY08 6/15

Solution method...

based on the first order Taylor expansion:

$$F_{ ilde{\chi}_1^0}(E,X+dX) = F_{ ilde{\chi}_1^0}(E,X) + dX rac{\partial F_{ ilde{\chi}_1^0}(E,X)}{\partial X} + \cdots$$
 where

the boundary condition $F_{\tilde{\chi}_1^0}(E,0)$ is given by the incident $\tilde{\chi}_1^0$ flux (e.g. SHdecay: hep-ph/0211406).

Check of the results:

For s- and t-channel:
$$\tilde{\chi}_1^0 + q_i \to \cdots \to \tilde{\chi}_1^0 + X$$

 $\implies \Phi_{\tilde{\chi}_1^0} = \int_{m_{\tilde{\chi}_1^0}}^{E_{\text{max}}} F_{\tilde{\chi}_1^0}(E, X) dE = \text{const.}$

•
$$F_{ ilde{\chi}_1^0}(E,0) = 0$$
 for $E > E_{max}$

independent of X

Transport equation for s-channel scattering (bino-dominated $\tilde{\chi}_1^0$)

Transport equation for *t*-channel scattering (higgsino-dominated $\tilde{\chi}_1^0$)

x_{max} : maximal column depth of the Earth

(integrated from 10⁵ to 10¹² GeV)

Event rates...

can be calculated with the help of $F_{\tilde{\chi}^0_1}(E, X)$. For example, the

neutralino event rates for the s-channel are given by:

$$N = \int_{E_{\min}}^{E_{\max}} dE_{vis} \int_{X_{\min}}^{X_{\max}} dX \int_{0}^{y_{\max}} \frac{dy}{y} \frac{d\sigma_{s}(\frac{E_{vis}}{y})}{dy} F_{\tilde{\chi}_{1}^{0}}(\frac{E_{vis}}{y}, X) \mathcal{V}$$

 $\mathcal{V} \propto V_{\mathrm{eff}} \epsilon_{\mathit{dC}} t$, where V_{eff} : w.e. effective volume,

 ϵ_{dc} : duty cycle,

t: measurement period.

However: One will need at least teraton scale targets to detect neutralinos...

Future satellite experiments

- EUSO: stay on the ISS; monitors a surface area of $\mathcal{O}(10^5)$ km² \Rightarrow target volume of \approx 2.4 teratons
- OWL: two satellites; monitors a surface area of O(10⁶) km² ⇒ target volume of ≈ 10.0 teratons

S. Bornhauser (University of Bonn)

Cosmic neutralinos

Event rates for higgsino–like $ ilde{\chi}_1^0$				
$E_{ m vis} \ge 10^{6}~{ m GeV},M_X = 10^{12}~{ m GeV}$	$N_{\tilde{\chi}_1^0}$	$N_{ u_{ au}}$		
$q\bar{q}$	0.19	3.87		
q ilde q	0.58	7.04		
<i>Ĩ</i> Ĩ	7.37	14.17		
5 imes q ilde q	4.97	45.00		
$E_{\rm vis} \ge 10^9 { m ~GeV}, M_X = 10^{12} { m ~GeV}$	$N_{\tilde{\chi}_1^0}$	$N_{ u_{ au}}$		
$q \bar{q}$	0.0089	0.0001		
q ilde q	0.0608	0.0001		
<i>Ĩ</i> Ĩ	2.5121	0.0003		
5 imes q ilde q	0.2624	0.0006		
$E_{\rm vis} \ge 10^6 { m ~GeV}, M_X = 10^{16} { m ~GeV}$	$N_{\tilde{\chi}^0_1}$	$N_{ u_{ au}}$		
$rac{E_{ m vis} \geq 10^6 \ { m GeV}, \ M_X = 10^{16} \ { m GeV}}{q ar q}$	Ν _{χ̃1} 0.0105	Ν _{ντ} 0.4448		
$egin{array}{c} E_{ m vis} \geq 10^6 \; { m GeV}, M_X = 10^{16} \; { m GeV} \ \hline q ar q \ q \ q \ q \ q \ q \ q \ q \ q \ q $	$\frac{N_{\tilde{\chi}_{1}^{0}}}{0.0105}$ 0.0078	$N_{ u_{ au}}$ 0.4448 0.3079		
	$\frac{N_{\tilde{\chi}^0_1}}{0.0105}$ 0.0078 0.0063	$\frac{N_{\nu_{\tau}}}{0.4448}$ 0.3079 0.2917		
$egin{aligned} E_{ m vis} \geq 10^6 \ { m GeV}, \ M_X = 10^{16} \ { m GeV} \ \hline q ar q \ q \ ar q \ \ h \ h \ h \ h \ h \ h \ h \ h \ h$	$\begin{array}{c} N_{\tilde{\chi}_1^0} \\ 0.0105 \\ 0.0078 \\ 0.0063 \\ 0.0124 \end{array}$	$\frac{N_{\nu_{\tau}}}{0.4448}\\0.3079\\0.2917\\0.4940$		
$egin{aligned} \overline{E_{ ext{vis}}} &\geq 10^6 ext{ GeV}, \ M_X &= 10^{16} ext{ GeV} \ \hline q ar{q} \ q ar{q} \ \hline q ar{q} \ \hline I I \ \hline 5 & imes q ar{q} \ \hline E_{ ext{vis}} &\geq 10^9 ext{ GeV}, \ M_X &= 10^{16} ext{ GeV} \end{aligned}$	$\begin{array}{c} N_{\tilde{\chi}_{1}^{0}} \\ 0.0105 \\ 0.0078 \\ 0.0063 \\ 0.0124 \\ N_{\tilde{\chi}_{1}^{0}} \end{array}$	$\frac{N_{\nu_{\tau}}}{0.4448}$ 0.3079 0.2917 0.4940 $N_{\nu_{\tau}}$		
$egin{aligned} E_{ m vis} \geq 10^6 \ { m GeV}, \ M_X = 10^{16} \ { m GeV} \ \hline qar q \ \hline q \ \hline q \ \hline II \ \hline 5 imes q ar q \ \hline E_{ m vis} \geq 10^9 \ { m GeV}, \ M_X = 10^{16} \ { m GeV} \ \hline q ar q \ \hline q \ q \$	$\begin{array}{c} N_{\tilde{\chi}_{1}^{0}} \\ 0.0105 \\ 0.0078 \\ 0.0063 \\ 0.0124 \\ N_{\tilde{\chi}_{1}^{0}} \\ 0.000927 \end{array}$	$\frac{N_{\nu_{\tau}}}{0.4448}$ 0.3079 0.2917 0.4940 $\frac{N_{\nu_{\tau}}}{0.000007}$		
$egin{aligned} E_{ m vis} \geq 10^6 \ { m GeV}, \ M_X = 10^{16} \ { m GeV} \ \hline qar q \ \hline q \ q \ \hline M_X \ \hline f \ M_X \ \hline M_X \ \hline$	$\begin{array}{c} N_{\tilde{\chi}_1^0} \\ 0.0105 \\ 0.0078 \\ 0.0063 \\ 0.0124 \\ N_{\tilde{\chi}_1^0} \\ 0.000927 \\ 0.001258 \end{array}$	$\frac{N_{\nu_{\tau}}}{0.4448}$ 0.3079 0.2917 0.4940 $\frac{N_{\nu_{\tau}}}{0.000007}$ 0.000005		
$egin{aligned} \overline{E_{ ext{vis}}} \geq 10^6 & ext{GeV}, \ M_X = 10^{16} & ext{GeV} \ \hline q ar{q} \ q ar{q} \ \hline \eta ar{q} \ \hline ar{II} \ \hline ar{I} \ \hline ar{S} imes q ar{q} \ \hline ar{E_{ ext{vis}}} \geq 10^9 & ext{GeV}, \ M_X = 10^{16} & ext{GeV} \ \hline q ar{q} \ \hline q ar{q} \ \hline ar{II} \ ar{II} \ ar{II} \ ar{II} \ ar{II} \ \hline ar{II} \ ar{III} \ ar{II} \ ar{III} \ ar{IIII} \ ar{IIIII} \ ar{IIII} \ ar{IIIII} \ ar{IIII} \ ar{IIIII} \ ar{IIIII} \ ar{IIIII} \ ar{IIIIIIIIIIIII \ ar{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{array}{c} N_{\tilde{\chi}_1^0} \\ 0.0105 \\ 0.0078 \\ 0.0063 \\ 0.0124 \\ N_{\tilde{\chi}_1^0} \\ 0.000927 \\ 0.001258 \\ 0.001735 \end{array}$	$\frac{N_{\nu_{\tau}}}{0.4448}$ 0.3079 0.2917 0.4940 $\frac{N_{\nu_{\tau}}}{0.000007}$ 0.000005 0.000005		

Parameters of the given results:

- target volume: 10Tt
- m. period: 1y
- duty cycle: 10%

Detectable if:

- mass of X particle close to its lower bound
- large ratio of neutralino and proton fluxes
- experiment must be able to detect

Cerenkov light

S. Bornhauser (University of Bonn)

Cosmic neutralinos

SUSY08 11/15

Event rates for higgsino–like $ ilde{\chi}_1^0$			
$E_{\rm vis} \ge 2 \cdot 10^7 { m ~GeV}, M_X = 10^{12} { m ~GeV}$	$N_{\tilde{\chi}_1^0}$	$N_{ u_{ au}}$	
$q\bar{q}$	0.10	0.18	
$q \widetilde{q}$	0.35	0.03	
Ĩ	5.41	0.67	
5 imes q ilde q	2.78	1.80	

Higher lower bound for $E_{\rm vis}$ leads to higher reduction of $\tilde{\chi}_1^0$ fluxes compared to ν fluxes due to the softer neutrino spectra.

S. Bornhauser (University of Bonn)

Event rates for bino–like $\tilde{\chi}_1^0$				
$E_{ m vis} \ge 10^{6}~{ m GeV},M_X = 10^{12}~{ m GeV}$	N _{D1}	N _{D2}	N _{D3}	j
$q\bar{q}$	0.055	0.039	0.017]
qq	0.130	0.099	0.051	1
<i>II</i>	0.805	0.796	0.586	1
5 imes q ilde q	1.294	0.944	0.434	
$E_{ m vis} \geq 10^9~ m GeV$, $M_X = 10^{12}~ m GeV$	N _{D1}	N _{D2}	N _{D3}	S
$q\bar{q}$	0.0005	0.0034	0.0055]
qq̃	0.0021	0.0142	0.0234	1
<i>Î</i> Î	0.0381	0.2551	0.4321	1
5 imes q ilde q	0.0145	0.0992	0.1571]
$E_{ m vis} \ge 10^{6}~{ m GeV},M_X = 10^{16}~{ m GeV}$	N _{D1}	N _{D2}	N _{D3}	Ì
$q\bar{q}$	0.0026	0.0020	0.0010]
qq	0.0020	0.0015	0.0007	1
ĨĨ	0.0018	0.0018	0.0007]
5 imes q ilde q	0.0032	0.0024	0.0012]

Squark masses:

• D1: 370 GeV

D2: 580 GeV

• D3: 1000 GeV

Bino–like neutralino fluxes of many X decay scenarios remain invisible; even monitoring of the whole Earth's surface "only" leads to $V_{\rm eff}$ of 5000 teratons

S. Bornhauser (University of Bonn)

Cosmic neutralinos

Use of the Moon as a detector

- Moon's surface covered by regolith (homogeneous dielectric medium) up to a height of 10m
- UHE particles produce radio waves via Askarayan effect and the emission of Cerenkov light, respectively (Dagkesamanskii and Zheleznyk)

	r_p		
Event rates for ν and			
$E_{\rm vis} \ge 10^{10} { m GeV}, M_X = 10^{12} { m GeV}$	$N_{ m total}^{ u}$	$N_{\tilde{\chi}_1^0}$	Ţ,
$q\bar{q}$	2.46	0.10	
q ilde q	4.25	1.10	
<i>II</i>	65.04	60.10	ν
5 imes q ilde q	11.29	1.22	Parameters of the given
$E_{ m vis} \ge 10^{10}~{ m GeV},~M_X = 10^{16}~{ m GeV}$	$N_{ m total}^{ u}$	$N_{\tilde{\chi}_1^0}$	results:
$q\bar{q}$	8.38	0.04	target volume: 320 Tt
q ilde q	5.52	0.05	• E threshold: 10 ¹⁰ GeV
lĩ –	6.09	0.19	
5 imes q ilde q	4.97	0.07] • duty cycle: 40%

S. Bornhauser (University of Bonn)

Cosmic neutralinos

x'

Earth

.

z'

Summary:

- there are cosmic rays with $E \gtrsim 10^{11} \text{ GeV}$
- possible explanation within the scope of TDMs
- detection of $\tilde{\chi}_1^0$'s would be a "smoking gun" for TDMs
- detection of UHE $\tilde{\chi}_1^0$'s might be possible with aid of future satellite experiments like EUSO or OWL if:
 - neutralinos are higgsino–like
 - experiments can detect Cerenkov light
 - mass of X particle is near its lower bound
 - large ratio of neutralino and proton fluxes
- detection of UHE ν 's and $\tilde{\chi}_1^0$'s might be possible through measurement of radio waves which are produced in the Moon's matter via the Askarayan effect