Search for gluinos in their decays through third generation quarks at LHC

Siba Prasad Das,

A. Datta (JU), M. Guchait (TIFR), M. Maity(VB)

spdas@th.physik.uni-bonn.de

Physikalisches Institut der Universitt Bonn Nussallee 12, D-53115 Bonn, Germany

Introduction

• $m_{sparticle} > O(1 \ TeV)$ disfavored from Naturalness and Fine-tuning. However, $m_{sparticle} \stackrel{>}{\sim} O(1 \ TeV)$ (1st and 2nd gen.) cures: SUSY FCNC, SUSY CP, suppress proton decay rates and etc.

• Therefore, models with $m_{sparticle} \sim O(1 TeV)$ without sacrificing naturalness, if viable, are indeed pretty good.

• These attractive features are realized in Focus point or Hyperbolic Branch of mSUGRA model. **Ref: Feng and Wilczek, hep-ph/0507032; Feng etal.** hep-ph/9909334; Chan etal. hep-ph/9710473.

• REWSB criterion:

(1)
$$\frac{1}{2}M_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1} - \mu^2 ,$$

• For all $\tan \beta$, $m_{H_u}^2 >> M_Z^2$ is disfavored by the naturalness criterion, as in that case, a large cancellation between $m_{H_u}^2$ and μ^2 is needed to arrive at the physical value of the weak scale. For moderate and large values of $\tan \beta$, however, $m_{H_d}^2 >> M_Z^2$ does not necessarily lead to fine-tuning. • At moderate to large $\tan \beta$, $\mu^2 \sim m_{H_u}^2$; $m_{H_u}^2 \sim \mathcal{O}(M_Z^2)$ ($m_{1/2}$ or A_0 is not too large ($\sim 1 \ TeV$)); $\mu \sim \mathcal{O}(M_Z)$

Focus Point

Figure 1: For $m_{1/2} = 300$ GeV, $A_0 = 0$, and = 174 GeV. Ref: Feng etal. hepph/9909334

• low μ important phenomenological implication: $\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{\pm}$ Higgsino dominated and are also mass degenerate ($\sim \mu$). A higgsino dominated gaugion couples to a light fermion and its super-partner with suppressed couplings \rightarrow important for collider and dark matter phenomenology. **Ref: H. Baer etal. hep-ph/0507282**

Neutralino relic density

• The properties of the Universe: density of baryons, matter, vacuum energy and the Hubble expansion rate.

- From WMAP $\Omega_{CDM} h^2 = 0.1126^{+0.0161}_{-0.0181}$ at 95% CL
- $\widetilde{\chi}_1^0$ can be CDM candidate and only certain regions give rise to relatively low $\Omega_{\widetilde{\chi}_1^0}h^2$ consistent with WMAP where $\widetilde{\chi}_1^0\widetilde{\chi}_1^0 \to SM$ particles is large.
- $0.094 < \Omega_{\widetilde{\chi}_1^0} h^2 < 0.129$

Figure 2: Regions of Neutralino relic density for $A_0 = 0$ and $\tan \beta = 30$ (55). **Ref: A. Belyaev, IJMPA 21(2006)205-235**.

Search for gluinos in their decays through third generation quarks at LHC – p.4/12

LHC reach from jets+ E_T channel

Figure 3: Parameter space of mSUGRA model for $\tan \beta = 30$ showing the reach of different colliders for supersymmetry discovery in the **jets+** $\not\!\!\!E_T$ channel from \tilde{q} and \tilde{g} pair production.

Ref: A. Belyaev, IJMPA 21(2006)205-235.

Signal and Backgrounds

In addition the \tilde{g} is light and \tilde{t}_1, \tilde{b}_1 are also light compared to the 1st and 2nd generation squarks

Gluino can decay:
$$\mathbf{\tilde{g}} \to \mathbf{tb} \widetilde{\chi}_{\mathbf{i}}^{\pm}; \mathbf{t} \mathbf{\bar{t}} \widetilde{\chi}_{\mathbf{j}}^{\mathbf{0}}; \mathbf{b} \mathbf{\bar{b}} \widetilde{\chi}_{\mathbf{i}}^{\mathbf{0}}$$

 \Rightarrow

(I)2 W + 4 b + jets + $\not\!\!E_T$

(II)4 W + 4 b + jets + $\not\!\!E_T$

Backgrounds: $t\bar{t}t\bar{t}$, $t\bar{t}b\bar{b}$, $b\bar{b}b\bar{b}$, $t\bar{t}qq$, $b\bar{b}qq$, Wtb, QCD....

Events generated with ALPGEN and then interfaced with PYTHIA (We also checked using CalcHEP and Madgraph)

Earlier works: parton level by U. Chattopadhyay etal., hep-ph/0008228;

generator level by P.G. Mercadante etal., hep-ph/0506142; b-tagging improves the Gluino discovery reach.

Present work (in preparation): with backgrounds. eg. $tt\bar{t}t$, $tt\bar{b}b$ and $bb\bar{b}b$, W and top quark reconstruction.

Selection of events

1) Lepton selection: Leptons are identified by using its particle identity at the generator level p_T^ℓ >20 GeV and $|\eta|_\ell$ <2.5.

2) Jet reconstruction: jets are constructed using the default subroutine PYCELL in PYTHIA: $|\eta|_j <$ 4.5; $\Delta R(j,j) >$ 0.5; $p_T^j > 30 GeV$

Cuts used: $p_T^{j^{1-4}} > 350., 250., 150., 100.$ GeV

3) b-tagging: If a jet (j^b) matches with a decayed B-hadron within a cone with $\Delta R < 0.3$ of the jet axis and if $|\eta|_{j^b} < 2.5$ and the decay length of the B-hadron > 3.0 mm.

4) ₽_T : 300 GeV

5) Effective mass: $M_{eff} = \sum p_T^j + \sum p_T^\ell + E_T$

Benchmark Point: $m_0, m_{1/2}, A_0, \tan \beta, sgn(\mu) = 3712 \text{ GeV}, 700 \text{ GeV}, 0.0, 30., +1 and m_t = 175 \text{ GeV} and <math>\Omega h^2 = 0.124$ (using micrOMEGA v2.0)

ALPGEN except $t\bar{t}$) with $\hat{p}_T(j,b) > 10$ GeV and $\Delta R(j,b) > 0.3$, $\eta(j,b) < 5.0$.

${ ilde g}$	$ ilde q_L$	$ ilde q_R$	${ ilde t}_1$	$\tilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^{\pm}$	$ ilde{\chi}_1^0$	$ ilde{\chi}_2^0$	$ ilde{\chi}^0_3$	$ ilde{\chi}_4^0$	h
1751	3912	3907	2469	397	599	287	393	404	612	121

Table 1: Mass spectrum for given mSUGRA parameter

Response (preliminary)

Table 2: Cumulative effects of cuts

Cuts	$t\bar{t}t\bar{t}$	$tar{t}bar{b}$	$tar{t}$	$tar{t}$	$bar{b}bar{b}$	Signal	Signal
			$\hat{p_T} < 500$	$\hat{p_T} > 500$		$(\widetilde{g}\widetilde{g})$	(\widetilde{gq})
No cuts	287616	118680	1000000	1000000	87621	100000	100000
$N_j \ge 6$	273977	62138	185574	255840	1122	97557	97764
$N_{j+l} \ge 9$	208565	12725	12599	43947	33	86013	88712
$N_b \ge 2$	123472	6909	3351	13004	13	52595	50228
$P_T^{b_1} \ge 3$	18963	486	270	8086	1	37614	38742
$\not\!$	1591	17	9	814	0	27870	32340
$M_{eff} \ge 2.2$	719	11	5	292	0	25269	32298
$\sigma(fb)$	2.9	190	4.3×10^{5}	1.4×10^3	8.0×10^{6}	1.64	0.11
$\sigma \times \epsilon_{ac}$ (fb)	0.0073	0.0176	2.1	0.4	<1	0.41	0.036

Total cross sections, Background: 2.52 fb, signal:0.446fb

So, for 100 ${\rm fb}^{-1}$ Significance \simeq 2.8

Other backgrounds, Optimization

\mathbb{E}_T -distribution

Figure 4: $\not\!\!E_T$ distribution : Normalized to Unity ; Signal:yellow ; $t\bar{t}$ ($\hat{p}_T > 500$): blue ; $t\bar{t}t\bar{t}\bar{t}$: green ; $t\bar{t}b\bar{b}$: red .

M_{eff} distribution

Figure 5: M_{eff} distribution : Normalized to Unity ; Signal:yellow ; $t\bar{t}$ ($\hat{p}_T > 500$): blue ; $t\bar{t}t\bar{t}$: green ; $t\bar{t}b\bar{b}$: red .

Conclusion

- In the Focus point regions, lighter neutralino and chargino are higgsino dominated.
- Neutralino may be the CDM candidates from WMAP.
- Gluino is light (since $m_{1/2}$ is not so large); 3rd generation squarks are also light compare to first two generations.
- Gluino pair production and Squark-Gluino production and their subsequent decay contains more number of b-jets; b-tagging helps.
- \bullet Considered the heavy flavour background, e.g. , tttt, ttbb, bbbb, ttqq,..
- $\not\!\!\!E_T$ and M_{eff} reject large fraction of backgrounds.
- Optimization.