Learning from WIMPs

Manuel Drees

Bonn University

Contents

1 Introduction

Contents

1 Introduction

2 Learning about the early Universe

Contents

1 Introduction

2 Learning about the early Universe
3 Learning about our galaxy

Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
4 Learning about WIMPs

Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
4 Learning about WIMPs
5 Summary

Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{\mathrm{DM}} h^{2} \geq 0.05$.
Ω : Mass density in units of critical density; $\Omega=1$ means flat Universe.
h : Scaled Hubble constant. Observation: $h=0.72 \pm 0.07$ (?)

Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{\mathrm{DM}} h^{2} \geq 0.05$.
Ω : Mass density in units of critical density; $\Omega=1$ means flat Universe.
h : Scaled Hubble constant. Observation: $h=0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...

Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{\mathrm{DM}} h^{2} \geq 0.05$.
Ω : Mass density in units of critical density; $\Omega=1$ means flat Universe.
h : Scaled Hubble constant. Observation: $h=0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\mathrm{DM}} h^{2}=0.105_{-0.013}^{+0.007}$

Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))

Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models

Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both direct and indirect detection of WIMPs

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV^{3}). Assume $\chi=\bar{\chi}$, i.e. $\chi \chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV^{3}). Assume $\chi=\bar{\chi}$, i.e. $\chi \chi \leftrightarrow \mathrm{SM}$ particles is possible, but single production of χ is forbidden by some symmetry.
Evolution of n_{χ} determined by Boltzmann equation:

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma_{\mathrm{ann}} v\right\rangle\left(n_{\chi}^{2}-n_{\chi, \mathrm{eq}}^{2}\right)
$$

$H=\dot{R} / R$: Hubble parameter
$\langle\ldots\rangle:$ Thermal averaging
$\sigma_{\text {ann }}=\sigma(\chi \chi \rightarrow$ SM particles $)$
v : relative velocity between χ 's in their cms
$n_{\chi, \text { eq }}: \chi$ density in full equilibrium

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Requires

$$
n_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle>H
$$

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Requires

$$
n_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle>H
$$

For $T<m_{\chi}: n_{\chi} \simeq n_{\chi, \text { eq }} \propto T^{3 / 2} e^{-m_{\chi} / T}, H \propto T^{2}$

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Requires

$$
n_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle>H
$$

For $T<m_{\chi}: n_{\chi} \simeq n_{\chi, \text { eq }} \propto T^{3 / 2} e^{-m_{\chi} / T}, H \propto T^{2}$
Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_{F}.

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Requires

$$
n_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle>H
$$

For $T<m_{\chi}: n_{\chi} \simeq n_{\chi, \text { eq }} \propto T^{3 / 2} e^{-m_{\chi} / T}, H \propto T^{2}$
Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_{F}.

For $T<T_{F}$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Requires

$$
n_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle>H
$$

For $T<m_{\chi}: n_{\chi} \simeq n_{\chi, \text { eq }} \propto T^{3 / 2} e^{-m_{\chi} / T}, H \propto T^{2}$
Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_{F}.

For $T<T_{F}$: WIMP production negligible, only annihilation relevant in Boltzmann equation.
Gives

$$
\Omega_{\chi} h^{2} \propto \frac{1}{\left\langle v \sigma_{\mathrm{ann}}\right\rangle} \sim 0.1 \text { for } \sigma_{\mathrm{ann}} \sim \mathrm{pb}
$$

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\mathrm{U}}$: partly testable at colliders

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\mathrm{U}}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\mathrm{U}}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\mathrm{U}}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:
$T_{R}>T_{F} \simeq m_{\chi} / 20$

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\mathrm{U}}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:
$T_{R}>T_{F} \simeq m_{\chi} / 20$
Can we test these assumptions, if Ω_{χ} and "all" particle physics properties of χ are known?

Low temperature scenario

Assume $T_{0} \lesssim T_{F}, n_{\chi}\left(T_{0}\right)=0\left(T_{0}\right.$: Initial temperature)

Low temperature scenario

Assume $T_{0} \lesssim T_{F}, n_{\chi}\left(T_{0}\right)=0$ (T_{0} : Initial temperature) Introduce dimensionless variables

$$
Y_{\chi} \equiv \frac{n_{\chi}}{s}, \quad x \equiv \frac{m_{\chi}}{T} \quad(s: \text { entropy density }) .
$$

Low temperature scenario

Assume $T_{0} \lesssim T_{F}, n_{\chi}\left(T_{0}\right)=0$ (T_{0} : Initial temperature) Introduce dimensionless variables

$$
Y_{\chi} \equiv \frac{n_{\chi}}{s}, \quad x \equiv \frac{m_{\chi}}{T} \quad(s: \text { entropy density }) .
$$

Use non-relativistic expansion of cross section:

$$
\sigma_{\mathrm{ann}}=a+b v^{2}+\mathcal{O}\left(v^{4}\right) \Longrightarrow\left\langle\sigma_{\mathrm{ann}} v\right\rangle=a+6 b / x
$$

Low temperature scenario

Assume $T_{0} \lesssim T_{F}, n_{\chi}\left(T_{0}\right)=0$ (T_{0} : Initial temperature) Introduce dimensionless variables

$$
Y_{\chi} \equiv \frac{n_{\chi}}{s}, \quad x \equiv \frac{m_{\chi}}{T} \quad(s: \text { entropy density }) .
$$

Use non-relativistic expansion of cross section:

$$
\sigma_{\mathrm{ann}}=a+b v^{2}+\mathcal{O}\left(v^{4}\right) \Longrightarrow\left\langle\sigma_{\mathrm{ann}} v\right\rangle=a+6 b / x
$$

Low temperature scenario (cont.'d)

Using explicit form of $H, Y_{\chi, \text { eq }}$, Boltzmann eq. becomes

$$
\begin{gathered}
\frac{d Y_{\chi}}{d x}=-f\left(a+\frac{6 b}{x}\right) x^{-2}\left(Y_{\chi}^{2}-c x^{3} \mathrm{e}^{-2 x}\right) . \\
f=1.32 m_{\chi} M_{\mathrm{Pl}} \sqrt{g_{*}}, c=0.0210 g_{\chi}^{2} / g_{*}^{2}
\end{gathered}
$$

Low temperature scenario (cont.'d)

Using explicit form of $H, Y_{\chi, \text { eq }}$, Boltzmann eq. becomes

$$
\frac{d Y_{\chi}}{d x}=-f\left(a+\frac{6 b}{x}\right) x^{-2}\left(Y_{\chi}^{2}-c x^{3} \mathrm{e}^{-2 x}\right) .
$$

$f=1.32 m_{\chi} M_{\mathrm{Pl} \sqrt{g_{*}}}, c=0.0210 g_{\chi}^{2} / g_{*}^{2}$
For $T_{0} \ll T_{F}$: Annihilation term $\propto Y_{\chi}^{2}$ negligible: defines 0 -th order solution $Y_{0}(x)$, with

$$
Y_{0}(x \rightarrow \infty)=f c\left[\frac{a}{2} x_{R} \mathrm{e}^{-2 x_{R}}+\left(\frac{a}{4}+3 b\right) \mathrm{e}^{-2 x_{R}}\right] .
$$

Note: $\Omega_{\chi} h^{2} \propto \sigma_{\text {ann }}$ in this case!

Low temperature scenario (cont.'d)

Using explicit form of $H, Y_{\chi, \text { eq }}$, Boltzmann eq. becomes

$$
\frac{d Y_{\chi}}{d x}=-f\left(a+\frac{6 b}{x}\right) x^{-2}\left(Y_{\chi}^{2}-c x^{3} \mathrm{e}^{-2 x}\right) .
$$

$f=1.32 m_{\chi} M_{\mathrm{Pl} \sqrt{g_{*}}}, c=0.0210 g_{\chi}^{2} / g_{*}^{2}$
For $T_{0} \ll T_{F}$: Annihilation term $\propto Y_{\chi}^{2}$ negligible: defines 0 -th order solution $Y_{0}(x)$, with

$$
Y_{0}(x \rightarrow \infty)=f c\left[\frac{a}{2} x_{R} \mathrm{e}^{-2 x_{R}}+\left(\frac{a}{4}+3 b\right) \mathrm{e}^{-2 x_{R}}\right] .
$$

Note: $\Omega_{\chi} h^{2} \propto \sigma_{\text {ann }}$ in this case!
For intermediate temperatures, $T_{0} \lesssim T_{F}$: Define 1 st-order solution

$$
Y_{1}=Y_{0}+\delta
$$

$\delta<0$ describes pure annihilation:

$$
\frac{d \delta}{d x}=-f\left(a+\frac{6 b}{x}\right) \frac{Y_{0}(x)^{2}}{x^{2}} .
$$

$\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\text {ann }}^{3}$

Low temperature scenario (cont.'d)

Get good results for $\Omega_{\chi} h^{2}$ for all $T_{0} \leq T_{F}$ through "resummation":

$$
Y_{1}=Y_{0}\left(1+\frac{\delta}{Y_{0}}\right) \simeq \frac{Y_{0}}{1-\delta / Y_{0}} \equiv Y_{1, r}
$$

$Y_{1, r} \propto 1 / \sigma_{\text {ann }}$ for $|\delta| \gg Y_{0}$ MD, Imminniyaz, Kakizaki, hep-ph/0603165

Numerical comparison: $b=0$

Numerical comparison: $b=0$

$a=10^{-8} \mathrm{GeV}^{-2}$

$$
a=10^{-9} \mathrm{GeV}^{-2}
$$

Can extend validity of new solution to all T, including $T \gg T_{0}$, by using $\Omega_{\chi}\left(T_{\max }\right)$ if $T_{0}>T_{\max } \simeq T_{F}$

Numerical comparison: $b=0$

$a=10^{-8} \mathrm{GeV}^{-2}$

$$
a=10^{-9} \mathrm{GeV}^{-2}
$$

Can extend validity of new solution to all T, including $T \gg T_{0}$, by using $\Omega_{\chi}\left(T_{\max }\right)$ if $T_{0}>T_{\max } \simeq T_{F}$

Note: $\Omega_{\chi}\left(T_{0}\right) \leq \Omega_{\chi}\left(T_{0} \gg T_{F}\right)$

Application: lower bound on T_{0} for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]
If $n_{\chi}\left(T_{0}\right)=0$, demanding $\Omega_{\chi} h^{2} \simeq 0.1$ imposes lower bound on T_{0} :

Application: lower bound on T_{0} for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph] If $n_{\chi}\left(T_{0}\right)=0$, demanding $\Omega_{\chi} h^{2} \simeq 0.1$ imposes lower bound on T_{0} :

Application: lower bound on T_{0} for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph] If $n_{\chi}\left(T_{0}\right)=0$, demanding $\Omega_{\chi} h^{2} \simeq 0.1$ imposes lower bound on T_{0} :

$\Longrightarrow T_{0} \geq \frac{m_{x}}{23} \quad$ Holds independent of $\sigma_{\text {ann }}!$

Application: lower bound on T_{0} for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]
If $n_{\chi}\left(T_{0}\right)=0$, demanding $\Omega_{\chi} h^{2} \simeq 0.1$ imposes lower bound on T_{0} :

$\Longrightarrow T_{0} \geq \frac{m_{x}}{23} \quad$ Holds independent of $\sigma_{\text {ann }}!$ If $T_{0} \simeq m_{\chi} / 22$: Get right $\Omega_{\chi} h^{2}$ for wide range of cross sections!

Constraining $H(T)$

- Assumptions

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)
- a, b are known (from collider experiments)

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$
A(z)=H_{\mathrm{st}}(z) / H(z), z=T / m_{\chi}
$$

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$
A(z)=H_{\mathrm{st}}(z) / H(z), z=T / m_{\chi}
$$

- Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

$$
A(z)=A\left(z_{F, \mathrm{st}}\right)+\left(z-z_{F, \mathrm{st}}\right) A^{\prime}\left(z_{F, \mathrm{st}}\right)+\left(z-z_{F, \mathrm{st}}\right)^{2} A^{\prime \prime}\left(z_{F, \mathrm{st}}\right) / 2
$$

Constraining $H(T)$

- Assumptions
- $\Omega_{\chi} h^{2}$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$
A(z)=H_{\mathrm{st}}(z) / H(z), z=T / m_{\chi}
$$

- Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

$$
A(z)=A\left(z_{F, \mathrm{st}}\right)+\left(z-z_{F, \mathrm{st}}\right) A^{\prime}\left(z_{F, \mathrm{st}}\right)+\left(z-z_{F, \mathrm{st}}\right)^{2} A^{\prime \prime}\left(z_{F, \mathrm{st}}\right) / 2
$$

- Successful $\mathrm{BBN} \Longrightarrow k \equiv A(z \rightarrow 0)=1.0 \pm 0.2$

Constraining $H(T)$ (cont.d)

Assume $T_{0} \gg T_{F} \Longrightarrow \Omega_{\chi} h^{2} \propto \frac{1}{\int_{0}^{z^{F} A(z)(a+6 b z) d z}}$

Constraining $H(T)$ (cont.d)

Assume $T_{0} \gg T_{F} \Longrightarrow \Omega_{\chi} h^{2} \propto \frac{1}{\int_{0}^{z^{2} F A(z)(a+6 b z) d z}}$

The case $A^{\prime \prime}\left(z_{F, \mathrm{st}}\right)=0$

The case $A^{\prime \prime}\left(z_{F, \mathrm{st}}\right)=0$

Relative constraint on $A\left(z_{F, \mathrm{st}}\right)$ weaker than that on $\Omega_{\chi} h^{2}$.

Direct WIMP detection

- WIMPs are everywhere!

Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
$\chi+N \rightarrow \chi+N$
Measured quantity: recoil energy of N

Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
$\chi+N \rightarrow \chi+N$
Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep-underground location; way to distinguish recoils from β, γ events; neutron screening;. .

Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:

$$
\chi+N \rightarrow \chi+N
$$

Measured quantity: recoil energy of N

- Detection needs ultrapure materials in deep-underground location; way to distinguish recoils from β, γ events; neutron screening;. .
- Is being pursued vigorously around the world!

Direct WIMP detection: theory

Counting rate given by

$$
\frac{d R}{d Q}=A F^{2}(Q) \int_{v_{\min }}^{v_{\text {se }}} \frac{f_{1}(v)}{v} d v
$$

Q : recoil energy
$A=\rho \sigma_{0} /\left(2 m_{\chi} m_{r}\right)=$ const.: encodes particle physics
$F(Q)$: nuclear form factor
v : WIMP velocity in lab frame
$v_{\text {min }}^{2}=m_{N} Q /\left(2 m_{r}^{2}\right)$
$v_{\text {esc }}$: Escape velocity from galaxy
$f_{1}(v)$: normalized one-dimensional WIMP velocity distribution

Direct WIMP detection: theory

Counting rate given by

$$
\frac{d R}{d Q}=A F^{2}(Q) \int_{v_{\min }}^{v_{\text {se }}} \frac{f_{1}(v)}{v} d v
$$

Q : recoil energy
$A=\rho \sigma_{0} /\left(2 m_{\chi} m_{r}\right)=$ const.: encodes particle physics
$F(Q)$: nuclear form factor
v : WIMP velocity in lab frame
$v_{\text {min }}^{2}=m_{N} Q /\left(2 m_{r}^{2}\right)$
$v_{\text {esc }}$: Escape velocity from galaxy
$f_{1}(v)$: normalized one-dimensional WIMP velocity distribution
In principle, can invert this relation to measure $f_{1}(v)$!

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

$\mathcal{N}:$ Normalization $\left(\int_{0}^{\infty} f_{1}(v) d v=1\right)$.

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

$\mathcal{N}:$ Normalization $\left(\int_{0}^{\infty} f_{1}(v) d v=1\right)$.
Need to know form factor \Longrightarrow stick to spin-independent scattering.

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

$\mathcal{N}:$ Normalization $\left(\int_{0}^{\infty} f_{1}(v) d v=1\right)$.
Need to know form factor \Longrightarrow stick to spin-independent scattering.
Need to know m_{χ}, but do not need σ_{0}, ρ.

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

$\mathcal{N}:$ Normalization $\left(\int_{0}^{\infty} f_{1}(v) d v=1\right)$.
Need to know form factor \Longrightarrow stick to spin-independent scattering.
Need to know m_{χ}, but do not need σ_{0}, ρ.
Need to know slope of recoil spectrum!

Direct reconstruction of f_{1}

MD \& C.L. Shan, astro-ph/0703651

$$
f_{1}(v)=\mathcal{N}\left\{-2 Q \frac{d}{d Q}\left[\frac{1}{F^{2}(Q)} \frac{d R}{d Q}\right]\right\}_{Q=2 m_{r}^{2} v^{2} / m_{N}}
$$

$\mathcal{N}:$ Normalization $\left(\int_{0}^{\infty} f_{1}(v) d v=1\right)$.
Need to know form factor \Longrightarrow stick to spin-independent scattering.
Need to know m_{χ}, but do not need σ_{0}, ρ.
Need to know slope of recoil spectrum!
$d R / d Q$ is approximately exponential: better work with logarithmic slope

Determining the logarithmic slope of $d R / d Q$

- Good local observable: Average energy transfer $\langle Q\rangle_{i}$ in i-th bin

Determining the logarithmic slope of $d R / d Q$

- Good local observable: Average energy transfer $\langle Q\rangle_{i}$ in i-th bin
- Stat. error on slope $\propto(\text { bin width })^{-1.5} \Longrightarrow$ need large bins

Determining the logarithmic slope of $d R / d Q$

- Good local observable: Average energy transfer $\langle Q\rangle_{i}$ in i-th bin
- Stat. error on slope $\propto(\text { bin width })^{-1.5} \Longrightarrow$ need large bins
- To maximize information: use overlapping bins ("windows")

Recoil spectrum: prediction and simulated measurement

Recoil spectrum: prediction and simulated measurement

Statistical exclusion of constant f_{1}

Statistical exclusion of constant f_{1}

Need several hundred events to begin direct reconstruction!

Determining moments of f_{1}

$$
\left\langle v^{n}\right\rangle \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v
$$

Determining moments of f_{1}

$$
\begin{aligned}
\left\langle v^{n}\right\rangle & \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v \\
& \propto \int_{0}^{\infty} Q^{(n-1) / 2} \frac{1}{F^{2}(Q)} \frac{d R}{d Q} d Q
\end{aligned}
$$

Determining moments of f_{1}

$$
\begin{aligned}
\left\langle v^{n}\right\rangle & \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v \\
& \propto \int_{0}^{\infty} Q^{(n-1) / 2} \frac{1}{F^{2}(Q)} \frac{d R}{d Q} d Q \\
& \longrightarrow \sum_{\text {events } a} \frac{Q_{a}^{(n-1) / 2}}{F^{2}\left(Q_{a}\right)}
\end{aligned}
$$

Determining moments of f_{1}

$$
\begin{aligned}
\left\langle v^{n}\right\rangle & \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v \\
& \propto \int_{0}^{\infty} Q^{(n-1) / 2} \frac{1}{F^{2}(Q)} \frac{d R}{d Q} d Q \\
& \rightarrow \sum_{\text {events } a} \frac{Q_{a}^{(n-1) / 2}}{F^{2}\left(Q_{a}\right)}
\end{aligned}
$$

Can incorporate finite energy (hence velocity) threshold

Determining moments of f_{1}

$$
\begin{aligned}
\left\langle v^{n}\right\rangle & \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v \\
& \propto \int_{0}^{\infty} Q^{(n-1) / 2} \frac{1}{F F^{2}(Q)} \frac{d R}{d Q} d Q \\
& \rightarrow \sum_{\text {events } a} \frac{Q_{a}^{(n-1) / 2}}{F^{2}\left(Q_{a}\right)}
\end{aligned}
$$

Can incorporate finite energy (hence velocity) threshold Moments are strongly correlated!

Determining moments of f_{1}

$$
\begin{aligned}
\left\langle v^{n}\right\rangle & \equiv \int_{0}^{\infty} v^{n} f_{1}(v) d v \\
& \propto \int_{0}^{\infty} Q^{(n-1) / 2} \frac{1}{F^{2}(Q)} \frac{d R}{d Q} d Q \\
& \rightarrow \sum_{\text {events } a} \frac{Q_{a}^{(n-1) / 2}}{F^{2}\left(Q_{a}\right)}
\end{aligned}
$$

Can incorporate finite energy (hence velocity) threshold Moments are strongly correlated!

High moments, and their errors, are underestimated in
"typical" experiment: get large contribution from large Q

Determination of first 10 moments

Constraining a "late infall" component

Constraining a "late infall" component

Determining the WIMP mass

MD \& C.L. Shan, in progress
Can determine m_{χ} from requirement that different targets yield same moments of f_{1}

Range of WIMP mass from simulation Preliminary!

Summary

- Learning about the Early Universe:

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\mathrm{BBN}}$

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$
- Learning about our galaxy:

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$
- Learning about our galaxy:
- Direct reconstruction of $f_{1}(v)$ needs several hundred events

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$
- Learning about our galaxy:
- Direct reconstruction of $f_{1}(v)$ needs several hundred events
- Non-trivial statements about moments of f_{1} possible with few dozen events

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$
- Learning about our galaxy:
- Direct reconstruction of $f_{1}(v)$ needs several hundred events
- Non-trivial statements about moments of f_{1} possible with few dozen events
- Needs to be done to determine ρ_{χ} : required input for learning about early Universe!

Summary

- Learning about the Early Universe:
- If all DM is thermal WIMPs: $T_{0} \geq m_{\chi} / 23 \sim 10^{4} T_{\text {BBN }}$
- Error on Hubble parameter during WIMP freeze-out somewhat bigger than that on $\Omega_{\chi} h^{2}$
- Learning about our galaxy:
- Direct reconstruction of $f_{1}(v)$ needs several hundred events
- Non-trivial statements about moments of f_{1} possible with few dozen events
- Needs to be done to determine ρ_{χ} : required input for learning about early Universe!
- Learning about WIMPs: Can determine m_{χ} from moments of f_{1} measured with two different targets.

