Making and Detecting Dark Matter Particles

Manuel Drees

Bonn University

1 Introduction: The need for DM

1 Introduction: The need for DM
 2 "Sterile" neutrinos

- 1 Introduction: The need for DM
- 2 "Sterile" neutrinos
- 3 Super-/E-Wimps

- 1 Introduction: The need for DM
 2 "Sterile" neutrinos
- 3 Super-/E-Wimps
- 4 WIMPs

- 1 Introduction: The need for DM
- 2 "Sterile" neutrinos
- 3 Super-/E-Wimps
- 4 WIMPs
- 5 MeV Dark Matter

- 1 Introduction: The need for DM
- 2 "Sterile" neutrinos
- 3 Super-/E-Wimps
- 4 WIMPs
- 5 MeV Dark Matter
- 6 Summary

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Total baryon density is determined by:

■ Big Bang Nucleosynthesis → talk by K. Olive

Total baryon density is determined by:

- Big Bang Nucleosynthesis → talk by K. Olive
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis → talk by K. Olive
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis \rightarrow talk by K. Olive
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and has (strongly) suppressed coupling to elm radiation

Remarks

Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!

Remarks

- Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!
- Evidence for $\Omega_{DM} \gtrsim 0.2$ much more robust than that! (Does, however, assume standard law of gravitation.)

Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

Too many sub-halos are predicted: Might well be "dark dwarves" (w/o baryons; perhaps blown out by first supernovae)

Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

- Too many sub-halos are predicted: Might well be "dark dwarves" (w/o baryons; perhaps blown out by first supernovae)
- Simulations seem to over-predict DM density near centers of galaxies ("cusp problem"). Warning: many things going on in these regions!

Observation of merging cluster 1E0657-56 ("bullet cluster"):

Using X-rays (CHANDRA): observes hot (baryonic) gas

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter Resulting bound on DM–DM scattering cross section constrains models of interacting DM! Markevitch et al.,

astro-ph/0309303

Bullet cluster

• Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve cusp problem

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re-ionization of Universe (no longer a problem?)
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re-ionization of Universe (no longer a problem?)
- Are unstable!

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta$$

$$B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta \qquad \qquad B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Crossed version of left diagram contributes to production: $\nu_i + f \rightarrow \nu_s + f; \quad \nu_i + f \rightarrow \nu_s + f'$

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta \qquad \qquad B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Crossed version of left diagram contributes to production: $\nu_i + f \rightarrow \nu_s + f; \quad \nu_i + f \rightarrow \nu_s + f'$

Right diagram gives only way to detect ν_s : monochromatic (X–ray) photon at $E_{\gamma} = m_{\nu_s}/2$.

Standard sterile neutrinos are excluded!

Viel et al., astro-ph/0605706

Standard sterile neutrinos are excluded!

Viel et al., astro-ph/0605706

Loophole: Use non–standard production mechanism: large lepton asymmetry ($\Delta L \sim 0.1$), ν_s coupling to inflaton, ...

Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Super_/E_WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms: (→ parallel talk Steffen)

Super_/E_WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms: (→ parallel talk Steffen)
 - Thermal production: E.g. $g + g \rightarrow \tilde{g} + (\tilde{G} \text{ or } \tilde{a})$: $\Omega_{\tilde{G}}h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$ T_R : re-heat temperature of Universe

Super_/E_WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- **•** Two production mechanisms: $(\rightarrow \text{ parallel talk Steffen})$
 - Thermal production: E.g. g + g → ğ + (G̃ or ã): Ω_{G̃}h² ≃ 0.1 (M_{g̃}/1 TeV)² 1 GeV/m_{G̃}/2.4·10⁷ GeV T_R : re-heat temperature of Universe
 From NLSP decay: E.g. τ̃₁ → τ + G̃ or ã:

$$\Omega_{\tilde{G} \text{ or } \tilde{a}} h^2 = \widetilde{\Omega}_{\text{NLSP}} h^2 \frac{m_{\tilde{G} \text{ or } \tilde{a}}}{m_{\text{NLSP}}}$$

Super-/E-WIMPs (cont.d)

• Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0 = \text{LSP}} h^2 \gg 0.1 \text{ DM}$ safe, by setting $m_{\tilde{G} \text{ or } \tilde{a}} = \frac{0.1}{\Omega_{\tilde{\chi}_1^0} h^2} m_{\tilde{\chi}_1^0}$, and low T_R

Super-/E-WIMPs (cont.d)

- Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0 = \text{LSP}} h^2 \gg 0.1 \text{ DM}$ safe, by setting $m_{\tilde{G} \text{ or } \tilde{a}} = \frac{0.1}{\Omega_{\tilde{\chi}_1^0} h^2} m_{\tilde{\chi}_1^0}$, and low T_R
- NLSP $\rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays

Super_/E_WIMPs (cont.d)

- Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0 = \text{LSP}} h^2 \gg 0.1 \text{ DM}$ safe, by setting $m_{\tilde{G} \text{ or } \tilde{a}} = \frac{0.1}{\Omega_{\tilde{\chi}_1^0} h^2} m_{\tilde{\chi}_1^0}$, and low T_R
- NLSP $\rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays
- DM Super-/E-WIMPs cannot be detected

Super_/E_WIMPs (cont.d)

- Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0 = \text{LSP}} h^2 \gg 0.1 \text{ DM}$ safe, by setting $m_{\tilde{G} \text{ or } \tilde{a}} = \frac{0.1}{\Omega_{\tilde{\chi}_1^0} h^2} m_{\tilde{\chi}_1^0}$, and low T_R
- NLSP $\rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays
- DM Super-/E-WIMPs cannot be detected
- Allow charged NLSP, e.g. *τ*₁. In this case, scenario might be testable if NLSP is sufficiently long–lived, by collecting NLSPs producted at colliders and carefully measuring their decays. Hamaguchi et al., hep-ph/0409248; Feng & Smith, hep-ph/0409278; Brandenbyrg et al., hep-ph/0501287; Baltz et al., hep-ph/0602187. However, BBN?? (→ talk Olive)

 Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both *direct* and *indirect* detection of WIMPs

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right) + \sum_{X, Y} n_X \Gamma(X \to \chi + Y)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{ann} = \sigma(\chi \chi \rightarrow SM \text{ particles})$ v: relative velocity between χ 's in their cms $n_{\chi, eq} : \chi$ density in full equilibrium

Assume χ was in full thermal equilibrium after inflation.

Assume χ was in full thermal equilibrium after inflation.

Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_{\chi} h^2 \propto \frac{1}{\langle v \sigma_{\rm ann} \rangle} \sim 0.1 \text{ for } \sigma_{\rm ann} \sim \mathsf{pb}$$

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

- y is effectively stable, $\tau_{\chi} \gg \tau_{U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

- y is effectively stable, $\tau_{\chi} \gg \tau_{U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders

- y is effectively stable, $\tau_{\chi} \gg \tau_{U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$

Low temperature scenario

Assume $T_R \lesssim T_F$, $n_{\chi}(T_R) = 0$

Low temperature scenario

Assume $T_R \leq T_F$, $n_{\chi}(T_R) = 0$ Introduce dimensionless variables $Y_{\chi} \equiv \frac{n_{\chi}}{s}$, $x \equiv \frac{m_{\chi}}{T}$

(s: entropy density).

Use non-relativistic expansion of cross section: $\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$

Low temperature scenario

Assume $T_R \leq T_F$, $n_{\chi}(T_R) = 0$ Introduce dimensionless variables $Y_{\chi} \equiv \frac{n_{\chi}}{s}, \ x \equiv \frac{m_{\chi}}{T}$

(s: entropy density).

Use non–relativistic expansion of cross section: $\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$

Using explicit form of H, $Y_{\chi,eq}$, Boltzmann eq. becomes $\frac{dY_{\chi}}{dx} = -f\left(a + \frac{6b}{x}\right)x^{-2}\left(Y_{\chi}^2 - cx^3e^{-2x}\right).$ $f = 1.32 \ m_{\chi}M_{\rm Pl}\sqrt{g_*}, \ c = 0.0210 \ g_{\chi}^2/g_*^2$

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi} h^2 \propto \sigma_{\rm ann}$ in this case!

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi}h^2 \propto \sigma_{\rm ann}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st–order solution

$$Y_1 = Y_0 + \delta \,.$$

 $\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f\left(a + \frac{6b}{x}\right)\frac{Y_0(x)^2}{x^2}$$

 $\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\rm ann}^3$

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi}h^2 \propto \sigma_{\rm ann}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st–order solution

$$Y_1 = Y_0 + \delta \,.$$

 $\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f\left(a + \frac{6b}{x}\right)\frac{Y_0(x)^2}{x^2}$$

 $\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\rm ann}^3$

Get good results for $\Omega_{\chi}h^2$ for all $T_R \leq T_F$ through "resummation": $Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0}\right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1.r}$

 $Y_{1,r} \propto 1/\sigma_{
m ann}$ for $|\delta| \gg Y_0$ MD, Imminniyaz, Kakizaki, hep-ph/0603165
Numerical comparison: b = 0

MD, Imminniyaz, Kakizaki, hep-ph/0603165

Numerical comparison: b = 0

Can extend validity of new solution to all T, including $T \gg T_R$, by using $\Omega_{\chi}(T_{\text{max}})$ if $T_R > T_{\text{max}} \simeq T_F$

Numerical comparison: b = 0

Can extend validity of new solution to all T, including $T \gg T_R$, by using $\Omega_{\chi}(T_{\text{max}})$ if $T_R > T_{\text{max}} \simeq T_F$

Note: $\Omega_{\chi}(T_R) \leq \Omega_{\chi}(T_R \gg T_F)$

Application: lower bound on T_R **for thermal WIMP**

If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi} h^2 \simeq 0.1$ imposes lower bound on T_R :

Application: lower bound on T_R **for thermal WIMP**

If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi} h^2 \simeq 0.1$ imposes lower bound on T_R :

Application: lower bound on T_R **for thermal WIMP**

If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi} h^2 \simeq 0.1$ imposes lower bound on T_R :

$$\implies T_R \ge \frac{m_{\chi}}{23}$$

Holds independently of $\sigma_{ann}!$

Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one-step unification of gauge couplings

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one-step unification of gauge couplings
- In simplest (R_p-invariant) version: LSP is stable: can be good candidate for DM particle! (Free bonus, not related to original motivation.)

Minimal Supergravity, mSUGRA

SUSY needs to be broken; no "standard model of SUSY breaking" exists

Minimal Supergravity, mSUGRA

- SUSY needs to be broken; no "standard model of SUSY breaking" exists
- Most general soft breaking of MSSM introduces ~ 100 new free parameters! Most of this vast parameter space excluded by FCNC constraints, unless $m_{\tilde{f}} \gg 1$ TeV.

Minimal Supergravity, mSUGRA

- SUSY needs to be broken; no "standard model of SUSY breaking" exists
- Most general soft breaking of MSSM introduces ~ 100 new free parameters! Most of this vast parameter space excluded by FCNC constraints, unless $m_{\tilde{f}} \gg 1$ TeV.
- Way out: Postulate universal spectrum at GUT scale ("universal boundary conditions"): Spectrum parameterized by universal scalar mass m₀; universal gaugino mass m_{1/2}; universal trilinear scalar term A₀; ratio of Higgs vevs tan β; sign of higgsino mass, sign(μ). (mSUGRA/CMSSM boundary conditions)

Advantages of mSUGRA

 FCNC small (but $b → s\gamma$, $B_s → \mu^+ \mu^-$ do constrain parameter space)

Advantages of mSUGRA

- FCNC small (but $b \to s\gamma$, $B_s \to \mu^+ \mu^-$ do constrain parameter space)
- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive

Advantages of mSUGRA

- FCNC small (but $b \to s\gamma$, $B_s \to \mu^+ \mu^-$ do constrain parameter space)
- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive
- Over much of parameter space, $\tilde{\chi}_1^0$ is stable LSP!

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1^0}h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1^0}h^2$ also exist.

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1^0}h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1^0}h^2$ also exist.

Several DM-allowed regions do exist:

• $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1^0}h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1^0}h^2$ also exist.

Several DM-allowed regions do exist:

• $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$

• $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1^0}h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1^0}h^2$ also exist.

Several DM-allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$
- $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component
- tan β ≫ 1: $m_A \simeq 2m_{\tilde{\chi}_1^0}$ possible ("A−pole"; similar, smaller, "h−pole" also [barely] exists)

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1^0}h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1^0}h^2$ also exist.

Several DM-allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$
- $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component
- I: $m_A \simeq 2m_{\tilde{\chi}_1^0}$ possible ("A−pole"; similar, smaller, "h−pole" also [barely] exists)

Following examples from Djouadi, MD, Kneurr, hep-ph/0602001

Example: $m_t = 172.7$ **GeV,** $\tan \beta = 10, A_0 = 0, \mu > 0$

Effect of varying $\tan \beta$

Mass Bounds

More meaningful than "size of allowed parameter space" mSUGRA, all parameters scanned over allowed region

particle	minimal mass [GeV]			min, max mass	
	basic	incl. $b \rightarrow s\gamma$	incl. DM	aggr. a_{μ}	incl. DM
$ ilde{\chi}^0_1$	52	52	53	53, 359	55, 357
$\tilde{\chi}_1^{\pm}$	105	105	105	105, 674	105, 667
$ ilde{\chi}^0_3$	135	135	135	135, 996	292, 991
$ ilde{ au}_1$	99	99	99	99, 1020	99, 915
h	91	91	91	91, 124	91, 124
H^{\pm}	128	128	128	128, 979	128, 960
\tilde{g}	359	380	380	399, 1880	412, 1870
$ ilde{d}_R$	406	498	498	498, 1740	498, 1740
$ ilde{t}_1$	102	104	104	231, 1440	244, 1440

WIMPs are everywhere!

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies
 - Inside the Sun or Earth

Indirect WIMP detection: signals

Slow \bar{p} , fast e^+ : background? Propagation?

Indirect WIMP detection: signals

- Slow \bar{p} , fast e^+ : background? Propagation?
- **Slow** \overline{d} : Propagation?

Indirect WIMP detection: signals

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \overline{d} : Propagation?
- Photons: Background?
Indirect WIMP detection: signals

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

Indirect WIMP detection: signals

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

Further discussion: talks by de Boer, Mannheim

WIMPs are everywhere!

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N

• Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep—underground location; way to distinguish recoils from β, γ events; neutron screening; ...
- Is being pursued vigorously around the world!

Direct WIMP detection: theory

Counting rate given by $\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{esc}} \frac{f_1(v)}{v} dv$ Q: recoil energy $A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.}$ F(Q): nuclear form factor v: WIMP velocity in lab frame $v_{\min}^2 = m_N Q / (2m_r^2)$ $v_{\rm esc}$: Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution

Direct WIMP detection: theory

Counting rate given by $\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$ Q: recoil energy $A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.}$ F(Q): nuclear form factor v: WIMP velocity in lab frame $v_{\min}^2 = m_N Q / (2m_r^2)$ $v_{\rm esc}$: Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution

In principle, can invert this relation to measure $f_1(v)$!

Recoil spectrum: prediction and simulated measurement MD, Shan, in progress

$f_1(v)$: prediction and simulated measurement

Dark Matter - p. 38/51

$f_1(v)$: prediction and simulated measurement

A few moments of $f_1(v)$ may be measurable with relatively few events

MeV Dark Matter

Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

MeV Dark Matter

Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

Line width (FWHM) $\simeq 3$ keV; resolution $\simeq 2.2$ keV

MeV Dark Matter

Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

Line width (FWHM) $\simeq 3$ keV; resolution $\simeq 2.2$ keV Background: continuum plus CR-induced 511 keV line _(from empty sky region)

INTEGRAL results (cont'd)

Source is extended

INTEGRAL results (cont'd)

Source is extended

Angular width (FWHM) $\simeq 10^{\circ}$; resolution $\simeq 2^{\circ}$

INTEGRAL results (cont'd)

Source is extended

Angular width (FWHM) $\simeq 10^{\circ}$; resolution $\simeq 2^{\circ}$

No evidence for substructure

• Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-

- Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-
- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):

- Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-
- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 - rate of positron production uncertain

- Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-
- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 - rate of positron production uncertain
 - difficulty filling entire bulge

- Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-
- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 - rate of positron production uncertain
 - difficulty filling entire bulge
- **Dark Matter** $\rightarrow e^+e^-$ annihilation: Can work!! Boehm, Hooper,

Silk, Casse, Paul, astro-ph/0309686, Phys. Rev. Lett 92, 101301 (2004)

• DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)
- If $m_{\chi} \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)
- If $m_{\chi} \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms
- \checkmark Magnetic fields keep positrons within $\sim 1~{\rm pc}$ of their origin

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)
- If m_{χ} ≤ 100 MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms
- \checkmark Magnetic fields keep positrons within $\sim 1~{\rm pc}$ of their origin
- \Longrightarrow Flux of 511 keV photons $\propto n_{\chi}^2!$

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)
- If m_{χ} ≤ 100 MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms
- Magnetic fields keep positrons within $\sim 1~{\rm pc}$ of their origin
- \implies Flux of 511 keV photons $\propto n_{\chi}^2!$
- In this case, DM distribution according to galactic models can reproduce angular distribution of signal reasonably well; less so, if flux $\propto n_{\chi}$ (decaying DM models)

Come from higher-order (radiative) process:

Come from higher-order (radiative) process:

Cross section $\sigma_{\rm rad} \propto \alpha \ln \frac{m_{\chi}}{m_e} \cdot \sigma(\chi \bar{\chi} \to e^+ e^-)$, $E_{\gamma} \propto m_{\chi}$

Come from higher-order (radiative) process:

Cross section $\sigma_{\rm rad} \propto \alpha \ln \frac{m_{\chi}}{m_e} \cdot \sigma(\chi \bar{\chi} \to e^+ e^-)$, $E_{\gamma} \propto m_{\chi}$

• To avoid overproduction of MeV photons: $m_{\chi} \le 20$ MeV! Beacom, Bell, Bertone, Phys. Rev. Lett 94, 171301 (2005)

Come from higher-order (radiative) process:

Cross section $\sigma_{\rm rad} \propto \alpha \ln \frac{m_{\chi}}{m_e} \cdot \sigma(\chi \bar{\chi} \to e^+ e^-)$, $E_{\gamma} \propto m_{\chi}$

- To avoid overproduction of MeV photons: $m_{\chi} \le 20$ MeV! Beacom, Bell, Bertone, Phys. Rev. Lett 94, 171301 (2005)
- Bound reduced to ~ 3 MeV if photons produced during slow-down of e^{\pm} are included. Beacom & Yuksel, Phys. Rev. Lett. 97, 071102 (2006)

Particle physics model

To explain flux of 511 keV photons: need

$$10^{-3} \text{ fb} \le v\sigma(\chi\bar{\chi} \to e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_{\chi}}\right)^2 \cdot \kappa \le 1 \text{ fb}$$

 $\kappa = 1 \ (2)$ if $\chi = \overline{\chi} \ (\chi \neq \overline{\chi})$. Expanded range in Boehm et al. by factor 10 in both directions. Note: ρ_{χ} fixed from galactic modelling $\Longrightarrow n_{\chi} \propto 1/m_{\chi}$.

Particle physics model

To explain flux of 511 keV photons: need

$$10^{-3} \text{ fb} \le v\sigma(\chi\bar{\chi} \to e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_\chi}\right)^2 \cdot \kappa \le 1 \text{ fb}$$

 $\kappa = 1 \ (2)$ if $\chi = \overline{\chi} \ (\chi \neq \overline{\chi})$. Expanded range in Boehm et al. by factor 10 in both directions. Note: ρ_{χ} fixed from galactic modelling $\Longrightarrow n_{\chi} \propto 1/m_{\chi}$.

Mass range for DM particle χ :

 $m_e \le m_\chi \le 20 \text{ MeV}$

Particle physics model

To explain flux of 511 keV photons: need

$$10^{-3} \text{ fb} \le v\sigma(\chi\bar{\chi} \to e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_{\chi}}\right)^2 \cdot \kappa \le 1 \text{ fb}$$

 $\kappa = 1 \ (2)$ if $\chi = \overline{\chi} \ (\chi \neq \overline{\chi})$. Expanded range in Boehm et al. by factor 10 in both directions. Note: ρ_{χ} fixed from galactic modelling $\Longrightarrow n_{\chi} \propto 1/m_{\chi}$.

• Mass range for DM particle χ :

$$m_e \le m_\chi \le 20 \text{ MeV}$$

• Taken together, these constraints imply that χ was in thermal equilibrium (using $T_R > 0.7$ MeV from BBN; Guidice et al. 2001)

Particle physics model (cont'd)

• To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs

Particle physics model (cont'd)

- To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs
- Strongly hints at annihilation from P-wave only: $v\sigma \propto v^2$. Note: $v_{\rm dec.}^2 \sim 0.1$, $v_{\rm now}^2 \sim 10^{-6}$.
Particle physics model (cont'd)

- To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs
- Strongly hints at annihilation from P-wave only: $v\sigma \propto v^2$. Note: $v_{\rm dec.}^2 \sim 0.1$, $v_{\rm now}^2 \sim 10^{-6}$.
- Simplest realization: χ annihilation mediated by exchange of spin–1 Boson U; χ is complex scalar or Majorana spin–1/2 fermion. (Dirac fermion would annihilate from S-wave!)

Particle physics model (cont'd)

- To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs
- Strongly hints at annihilation from P-wave only: $v\sigma \propto v^2$. Note: $v_{\rm dec.}^2 \sim 0.1$, $v_{\rm now}^2 \sim 10^{-6}$.
- Simplest realization: χ annihilation mediated by exchange of spin–1 Boson U; χ is complex scalar or Majorana spin–1/2 fermion. (Dirac fermion would annihilate from S-wave!)
- Relic density essentially fixes product $g_{\chi}^2 \left(g_{e_R}^2 + g_{e_L}^2 \right)$ of *U*-boson couplings.

For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave

- For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
- $g_e 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$

- For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
- $g_e 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$

- For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
- $g_e 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$
- $g_{\chi} \gg g_{e_R}, g_{e_L}$ natural if *U* couples to electrons only through mixing with $\gamma, Z!$
- If total gauge group $G = G_{SM} \times G_U$: SU(2) invariance implies $g_{e_L} = g_{\nu_e}$: took $g_{e_L} = 0$ most of the time.

- For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
- $g_e 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$
- If total gauge group $G = G_{SM} \times G_U$: SU(2) invariance implies $g_{e_L} = g_{\nu_e}$: took $g_{e_L} = 0$ most of the time.
- DM and $g_e 2$ constraints are compatible only for $M_U \lesssim 0.2 \text{ GeV}!$

- For most purposes, scalar χ ≃ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
- $g_e 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$
- If total gauge group $G = G_{SM} \times G_U$: SU(2) invariance implies $g_{e_L} = g_{\nu_e}$: took $g_{e_L} = 0$ most of the time.
- DM and $g_e 2$ constraints are compatible only for $M_U \lesssim 0.2 \text{ GeV}!$
- Did not attempt to build full (renormalizable) model.

Tests at low energy e^+e^- colliders

U-boson must couple to electrons: can be produced at e^+e^- colliders!

Tests at low energy e^+e^- colliders

U-boson must couple to electrons: can be produced at e^+e^- colliders!

$$\frac{d\sigma(e^+e^- \to U\gamma)}{d\cos\theta} = \frac{\alpha \left(g_{e_L}^2 + g_{e_R}^2\right)}{4s \left(1 - y\right)\sin^2\theta} \left[2\left(1 + y^2\right) - \sin^2\theta \left(1 - y\right)^2\right]$$

 $y = \frac{M_U^2}{s} < 0.04$ even at DA Φ NE.

• Cross section $\propto 1/s \Longrightarrow$ lower energy is in principle better!

- Cross section $\propto 1/s \implies$ lower energy is in principle better!
- However: $\frac{\int \mathcal{L}dt}{s} \Big|_{DA\Phi NE} < \frac{\int \mathcal{L}dt}{s} \Big|_{B-\text{factories}}$: *B*-factories should have better chance

- Cross section $\propto 1/s \implies$ lower energy is in principle better!
- However: $\frac{\int \mathcal{L}dt}{s} \Big|_{DA\Phi NE} < \frac{\int \mathcal{L}dt}{s} \Big|_{B-\text{factories}}$: *B*-factories should have better chance
- Two possible final states:

- Cross section $\propto 1/s \implies$ lower energy is in principle better!
- However: $\frac{\int \mathcal{L}dt}{s} \Big|_{DA\Phi NE} < \frac{\int \mathcal{L}dt}{s} \Big|_{B-\text{factories}}$: *B*-factories should have better chance
- Two possible final states:
 - $U \rightarrow e^+e^-$: have $e^+e^-\gamma$ final state

- Cross section $\propto 1/s \implies$ lower energy is in principle better!
- However: $\frac{\int \mathcal{L}dt}{s} \Big|_{DA\Phi NE} < \frac{\int \mathcal{L}dt}{s} \Big|_{B-\text{factories}}$: *B*-factories should have better chance
- Two possible final states:
 - $U \rightarrow e^+e^-$: have $e^+e^-\gamma$ final state
 - $U \rightarrow \nu \bar{\nu}, \ \chi \bar{\chi}$: have γ + 'nothing' final state (trigger??)

Reach for DA Φ **NE**

Reach for B-factories

Lots of different particle DM candidates have been suggested; not all are equally plausible

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile v's probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile v's probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile v's probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal WIMPs: lower bound on T_R increases by factor $\sim 10^4$

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile v's probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal WIMPs: lower bound on T_R increases by factor $\sim 10^4$
- WIMPs can be detected in a variety of ways; once detected, allow new probes of Universe