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Introduction: the need for Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07 (?)

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.105+0.007

−0.013 Spergel et al., astro–ph/0603449
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Big Bang Nucleosynthesis→ talk by K. Olive
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis→ talk by K. Olive

Analyses of CMB data

Consistent result: Ωbarh
2 ≃ 0.02

=⇒ Need non–baryonic DM!
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Only possible non–baryonic particle DM in SM: light
neutrinos!
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Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make
in sufficient quantity sufficiently early.
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)

which still survives today (lifetime τ ≫ 1010 yrs)

and has (strongly) suppressed coupling to elm radiation
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Remarks

Precise “WMAP” determination of DM density hinges
on assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!
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Remarks

Precise “WMAP” determination of DM density hinges
on assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!

Evidence for ΩDM >∼ 0.2 much more robust than that!
(Does, however, assume standard law of gravitation.)
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Possible problems with cold DM

Simulations of structure formation show some
discrepancies with observations on (sub–)galactic length
scales:

Too many sub–halos are predicted: Might well be “dark
dwarves” (w/o baryons; perhaps blown out by first
supernovae)
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Possible problems with cold DM

Simulations of structure formation show some
discrepancies with observations on (sub–)galactic length
scales:

Too many sub–halos are predicted: Might well be “dark
dwarves” (w/o baryons; perhaps blown out by first
supernovae)

Simulations seem to over–predict DM density near
centers of galaxies (“cusp problem”). Warning: many
things going on in these regions!
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Dark Matter – p. 9/51



DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Dark Matter – p. 9/51



DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter

Dark Matter – p. 9/51



DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter
Resulting bound on DM–DM scattering cross section
constrains models of interacting DM! Markevitch et al.,

astro–ph/0309303
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Bullet cluster
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Sterile keV neutrinos

Are SM gauge singlets, with small mixing angle θ to (at
least) one SM neutrino
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Sterile keV neutrinos

Are SM gauge singlets, with small mixing angle θ to (at
least) one SM neutrino

Have some independent motivation:
Are warm (or “cool”) DM: can solve cusp problem
Can explain pulsar kicks (through resonant
oscillation in presence of strong magnetic field)
Can lead to early re–ionization of Universe (no
longer a problem?)

Are unstable!
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Decays of “sterile” neutrinos

νs

νi

νj

ν̄jZ

∝ sin θ

νs
li

W

γ

νi∝ sin θ

Γ(νs) = G2
F m5

s

192π3 sin2 θ B(νs → γνi) ≃ 1%
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Decays of “sterile” neutrinos

νs

νi

νj

ν̄jZ

∝ sin θ

νs
li

W

γ

νi∝ sin θ

Γ(νs) = G2
F m5

s

192π3 sin2 θ B(νs → γνi) ≃ 1%

Crossed version of left diagram contributes to production:
νi + f → νs + f ; νi + f → νs + f ′

Right diagram gives only way to detect νs: monochromatic
(X–ray) photon at Eγ = mνs

/2.

Dark Matter – p. 12/51



Standard sterile neutrinos are excluded!
Viel et al., astro-ph/0605706
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XRB 
Boyarsky et al. (2005)

Watson et al. (2006)
M31

L=0 Production
Abazajian (2006) 

Pulsar kick
Kusenko & Segre’ (1999) 

Loophole: Use non–standard production mechanism: large
lepton asymmetry (∆L ∼ 0.1), νs coupling to inflaton, . . .
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Two production mechanisms: (→ parallel talk Steffen)

Thermal production: E.g. g + g → g̃ + (G̃ or ã):

ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

TR : re–heat temperature of Universe
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Two production mechanisms: (→ parallel talk Steffen)

Thermal production: E.g. g + g → g̃ + (G̃ or ã):

ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

TR : re–heat temperature of Universe

From NLSP decay: E.g. τ̃1 → τ + G̃ or ã:
ΩG̃ or ãh

2 = Ω̃NLSPh2 mG̃ or ã

mNLSP
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Super–/E–WIMPs (cont.d)

Can make SUSY scenarios giving Ωχ̃0
1=LSPh2 ≫ 0.1 DM

safe, by setting mG̃ or ã = 0.1
Ω

χ̃0
1
h2 mχ̃0

1
, and low TR
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Super–/E–WIMPs (cont.d)

Can make SUSY scenarios giving Ωχ̃0
1=LSPh2 ≫ 0.1 DM

safe, by setting mG̃ or ã = 0.1
Ω

χ̃0
1
h2 mχ̃0

1
, and low TR

NLSP → (G̃ or ã) + X decays tend to mess up BBN:
nearly as problematic as inverse decays

DM Super–/E–WIMPs cannot be detected

Allow charged NLSP, e.g. τ̃1. In this case, scenario
might be testable if NLSP is sufficiently long–lived, by
collecting NLSPs producted at colliders and carefully
measuring their decays. Hamaguchi et al., hep-ph/0409248; Feng &

Smith, hep-ph/0409278; Brandenbyrg et al., hep-ph/0501287; Baltz et al.,

hep-ph/0602187. However, BBN?? (→ talk Olive)
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WIMPs

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))
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WIMPs

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Can also (trivially) write down “tailor–made” WIMP
models

Roughly weak cross section automatically gives roughly
right relic density for thermal WIMPs! (On logarithmic
scale)

Roughly weak interactions may allow both direct and
indirect detection of WIMPs

Dark Matter – p. 16/51



WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.
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WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(
n2

χ − n2
χ, eq

)
+

∑

X,Y

nXΓ(X → χ + Y )

H = Ṙ/R : Hubble parameter
〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM particles)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium
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Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
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Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

For T < TF : WIMP production negligible, only annihilation
relevant in Boltzmann equation.

Gives
Ωχh2 ∝ 1

〈vσann〉
∼ 0.1 for σann ∼ pb
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Thermal WIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders
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Thermal WIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders

H at time of χ decoupling is known: partly testable at
colliders

Universe must have been sufficiently hot:
TR > TF ≃ mχ/20
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Low temperature scenario

Assume TR <∼ TF , nχ(TR) = 0
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Low temperature scenario

Assume TR <∼ TF , nχ(TR) = 0

Introduce dimensionless variables
Yχ ≡ nχ

s , x ≡ mχ

T

(s: entropy density).

Use non–relativistic expansion of cross section:
σann = a + bv2 + O(v4) =⇒ 〈σannv〉 = a + 6b/x
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Low temperature scenario

Assume TR <∼ TF , nχ(TR) = 0

Introduce dimensionless variables
Yχ ≡ nχ

s , x ≡ mχ

T

(s: entropy density).

Use non–relativistic expansion of cross section:
σann = a + bv2 + O(v4) =⇒ 〈σannv〉 = a + 6b/x

Using explicit form of H, Yχ,eq, Boltzmann eq. becomes
dYχ

dx = −f
(
a + 6b

x

)
x−2

(
Y 2

χ − cx3e−2x
)

.

f = 1.32 mχMPl
√

g∗, c = 0.0210 g2
χ/g2

∗
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Low temperature scenario (cont.’d)

For TR ≪ TF : Annihilation term ∝ Y 2
χ negligible: defines 0−th order

solution Y0(x), with

Y0(x → ∞) = fc
[

a
2xRe−2xR +

(
a
4 + 3b

)
e−2xR

]
.

Note: Ωχh2 ∝ σann in this case!
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Low temperature scenario (cont.’d)

For TR ≪ TF : Annihilation term ∝ Y 2
χ negligible: defines 0−th order

solution Y0(x), with

Y0(x → ∞) = fc
[

a
2xRe−2xR +

(
a
4 + 3b

)
e−2xR

]
.

Note: Ωχh2 ∝ σann in this case!

For intermediate temperatures, TR <∼ TF : Define 1st–order solution

Y1 = Y0 + δ .

δ < 0 describes pure annihilation:
dδ
dx = −f

(
a + 6b

x

) Y0(x)2

x2 .

δ(x) can be calculated analytically: δ ∝ σ3
ann
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Low temperature scenario (cont.’d)

For TR ≪ TF : Annihilation term ∝ Y 2
χ negligible: defines 0−th order

solution Y0(x), with

Y0(x → ∞) = fc
[

a
2xRe−2xR +

(
a
4 + 3b

)
e−2xR

]
.

Note: Ωχh2 ∝ σann in this case!

For intermediate temperatures, TR <∼ TF : Define 1st–order solution

Y1 = Y0 + δ .

δ < 0 describes pure annihilation:
dδ
dx = −f

(
a + 6b

x

) Y0(x)2

x2 .

δ(x) can be calculated analytically: δ ∝ σ3
ann

Get good results for Ωχh2 for all TR ≤ TF through “resummation”:

Y1 = Y0

(
1 + δ

Y0

)
≃ Y0

1−δ/Y0
≡ Y1.r

Y1,r ∝ 1/σann for |δ| ≫ Y0 MD, Imminniyaz, Kakizaki, hep-ph/0603165
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Numerical comparison: b = 0

MD, Imminniyaz, Kakizaki, hep-ph/0603165
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Numerical comparison: b = 0

MD, Imminniyaz, Kakizaki, hep-ph/0603165
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a = 10−8 GeV−2 a = 10−9 GeV−2

Can extend validity of new solution to all T , including T ≫ TR,
by using Ωχ(Tmax) if TR > Tmax ≃ TF

Note: Ωχ(TR) ≤ Ωχ(TR ≫ TF )
Dark Matter – p. 22/51



Application: lower bound on TR for thermal WIMP

If nχ(TR) = 0, demanding Ωχh2 ≃ 0.1 imposes lower bound
on TR:
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Application: lower bound on TR for thermal WIMP

If nχ(TR) = 0, demanding Ωχh2 ≃ 0.1 imposes lower bound
on TR:
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Application: lower bound on TR for thermal WIMP

If nχ(TR) = 0, demanding Ωχh2 ≃ 0.1 imposes lower bound
on TR:
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=⇒ TR ≥ mχ

23

Holds independently of σann!
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Best motivated WIMP: neutralino χ̃0
1

Weak–scale Supersymmetry stabilizes hierarchy
against radiative corrections
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Best motivated WIMP: neutralino χ̃0
1

Weak–scale Supersymmetry stabilizes hierarchy
against radiative corrections

HLS theorem: biggest allowed symmetry of S−matrix is
product of gauge group and SUSY

Local SUSY closely related to gravity (hence
Supergravity, SUGRA)

Related to superstring theory: best candidate TOE

Allows one–step unification of gauge couplings

In simplest (Rp−invariant) version: LSP is stable: can
be good candidate for DM particle! (Free bonus, not
related to original motivation.)
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Minimal Supergravity, mSUGRA

SUSY needs to be broken; no “standard model of
SUSY breaking” exists
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Minimal Supergravity, mSUGRA

SUSY needs to be broken; no “standard model of
SUSY breaking” exists

Most general soft breaking of MSSM introduces ∼ 100
new free parameters! Most of this vast parameter space
excluded by FCNC constraints, unless mf̃ ≫ 1 TeV.

Way out: Postulate universal spectrum at GUT scale
(“universal boundary conditions”): Spectrum
parameterized by universal scalar mass m0; universal
gaugino mass m1/2; universal trilinear scalar term A0;
ratio of Higgs vevs tanβ; sign of higgsino mass, sign(µ).
(mSUGRA/CMSSM boundary conditions)
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Advantages of mSUGRA

FCNC small (but b → sγ, Bs → µ+µ− do constrain
parameter space)
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Radiative symmetry breaking: loop corrections drive
(combination of) squared Higgs masses negative,
leaving squared sfermion masses positive
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Advantages of mSUGRA

FCNC small (but b → sγ, Bs → µ+µ− do constrain
parameter space)

Radiative symmetry breaking: loop corrections drive
(combination of) squared Higgs masses negative,
leaving squared sfermion masses positive

Over much of parameter space, χ̃0
1 is stable LSP!
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Thermal mSUGRA Dark Matter

Over most of collider–allowed parameter space, Ωχ̃0
1
h2 from

standard cosmology comes out too large in mSUGRA.
Regions with too small Ωχ̃0

1
h2 also exist.
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Thermal mSUGRA Dark Matter

Over most of collider–allowed parameter space, Ωχ̃0
1
h2 from

standard cosmology comes out too large in mSUGRA.
Regions with too small Ωχ̃0

1
h2 also exist.

Several DM–allowed regions do exist:

τ̃1 co–annihilation region: m2
1/2 ≫ m2

0

m2
0 ≫ m2

1/2: χ̃0
1 has sizable higgsino component

tan β ≫ 1: mA ≃ 2mχ̃0
1

possible (“A−pole”; similar,
smaller, “h−pole” also [barely] exists)
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Thermal mSUGRA Dark Matter

Over most of collider–allowed parameter space, Ωχ̃0
1
h2 from

standard cosmology comes out too large in mSUGRA.
Regions with too small Ωχ̃0

1
h2 also exist.

Several DM–allowed regions do exist:

τ̃1 co–annihilation region: m2
1/2 ≫ m2

0

m2
0 ≫ m2

1/2: χ̃0
1 has sizable higgsino component

tan β ≫ 1: mA ≃ 2mχ̃0
1

possible (“A−pole”; similar,
smaller, “h−pole” also [barely] exists)

Following examples from Djouadi, MD, Kneurr, hep-ph/0602001
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Example: mt = 172.7 GeV, tan β = 10, A0 = 0, µ > 0

m0 [GeV]

m1/2 [GeV]

Green: b → sγ excluded
Pink: Higgs search excl.
Magenta: 111 GeV ≤ mh ≤ 114 GeV
Red: 114 GeV ≤ mh ≤ 117 GeV
Dark grey: mτ̃1

< mχ̃0

1

Light grey: |µ|2 < 0 or sparticle search excl.

Black: DM favored

Dark Matter – p. 28/51



Effect of varying tan β

tan β = 5 tan β = 30

tanβ = 50

Blue: gµ − 2 favored

(e+e− data)
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Varying A0: mt = 172.7 GeV, tan β = 30, µ > 0
A0 = 0 A0 = −1 TeV

A0 = −2 TeV
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Varying mt: tan β = 50, A0 = 0, µ > 0

mt = 167 GeV mt = 172.7 GeV

mt = 178 GeV
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Mass Bounds
More meaningful than “size of allowed parameter space”

mSUGRA, all parameters scanned over allowed region

particle minimal mass [GeV] min, max mass

basic incl. b → sγ incl. DM aggr. aµ incl. DM

χ̃0

1
52 52 53 53, 359 55, 357

χ̃±
1

105 105 105 105, 674 105, 667

χ̃0

3
135 135 135 135, 996 292, 991

τ̃1 99 99 99 99, 1020 99, 915

h 91 91 91 91, 124 91, 124

H± 128 128 128 128, 979 128, 960

g̃ 359 380 380 399, 1880 412, 1870

d̃R 406 498 498 498, 1740 498, 1740

t̃1 102 104 104 231, 1440 244, 1440
Dark Matter – p. 32/51



Indirect WIMP detection

WIMPs are everywhere!
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In regions with increased WIMP density: WIMPs can
annihilate into SM particles even today:
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Indirect WIMP detection

WIMPs are everywhere!

In regions with increased WIMP density: WIMPs can
annihilate into SM particles even today:

In halo of galaxies
Near center of galaxies
Inside the Sun or Earth
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Indirect WIMP detection: signals

Slow p̄, fast e+: background? Propagation?
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Indirect WIMP detection: signals

Slow p̄, fast e+: background? Propagation?

Slow d̄: Propagation?

Photons: Background?

GeV Neutrinos: Low rate

Further discussion: talks by de Boer, Mannheim
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Direct WIMP detection

WIMPs are everywhere!

Dark Matter – p. 35/51



Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
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Dark Matter – p. 35/51



Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .
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Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

Is being pursued vigorously around the world!
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure f1(v)!
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Recoil spectrum: prediction and simulated measurement
MD, Shan, in progress

0 50 100 150 200 250 300
Q [keV]

1e-06

1e-05

0.0001
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500 events on Ge
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f1(v): prediction and simulated measurement

0 100 200 300 400 500 600 700
v [km/s]
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f 1(v
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Dark Matter – p. 38/51



f1(v): prediction and simulated measurement
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v [km/s]
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f 1(v
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]

500 events on Ge: stat. error only

A few moments of f1(v) may be measurable with relatively
few events
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MeV Dark Matter

Motivated by excess of 511 keV photons observed from
direction of galactic center, by everyone who looked; most
recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly

eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)
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MeV Dark Matter

Motivated by excess of 511 keV photons observed from
direction of galactic center, by everyone who looked; most
recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly

eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

Line width (FWHM) ≃ 3 keV; resolution ≃ 2.2 keV
Background: continuum plus CR-induced 511 keV line
(from empty sky region)
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INTEGRAL results (cont’d)

Source is extended

Dark Matter – p. 40/51



INTEGRAL results (cont’d)

Source is extended

Angular width (FWHM) ≃ 10◦; resolution ≃ 2◦
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INTEGRAL results (cont’d)

Source is extended

Angular width (FWHM) ≃ 10◦; resolution ≃ 2◦

No evidence for substructure
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Interpretation

Line is quite sharp =⇒ must come from annihilation of
non–relativistic e+e−
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Interpretation

Line is quite sharp =⇒ must come from annihilation of
non–relativistic e+e−

Astrophysical sources (novae, supernovae,
hypernovae, stellar flares):

rate of positron production uncertain
difficulty filling entire bulge

Dark Matter → e+e− annihilation: Can work!! Boehm, Hooper,

Silk, Casse, Paul, astro–ph/0309686, Phys. Rev. Lett 92, 101301 (2004)
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Interpretation in terms of MeV DM

DM particles χ annihilate: χχ̄ → e+e− (χ ≡ χ̄ is
possible.)
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neutral atoms
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Interpretation in terms of MeV DM

DM particles χ annihilate: χχ̄ → e+e− (χ ≡ χ̄ is
possible.)

If mχ ≤ 100 MeV: positrons get slowed down sufficiently
fast before annihilating; main mechanism: ionization of
neutral atoms

Magnetic fields keep positrons within ∼ 1 pc of their
origin

=⇒ Flux of 511 keV photons ∝ n2
χ!

In this case, DM distribution according to galactic
models can reproduce angular distribution of signal
reasonably well; less so, if flux ∝ nχ (decaying DM
models)
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Additional astrophysical constraints

Come from higher-order (radiative) process:

χ

χ̄

e+

e−

γ

χ

χ̄

e+

e−

γ
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χ
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χ̄

e+

e−

γ

Cross section σrad ∝ α ln mχ

me
· σ(χχ̄ → e+e−), Eγ ∝ mχ
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Additional astrophysical constraints

Come from higher-order (radiative) process:

χ

χ̄

e+

e−

γ

χ

χ̄

e+

e−

γ

Cross section σrad ∝ α ln mχ

me
· σ(χχ̄ → e+e−), Eγ ∝ mχ

To avoid overproduction of MeV photons: mχ ≤ 20 MeV!
Beacom, Bell, Bertone, Phys. Rev. Lett 94, 171301 (2005)
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Additional astrophysical constraints

Come from higher-order (radiative) process:

χ

χ̄

e+

e−

γ

χ

χ̄

e+

e−

γ

Cross section σrad ∝ α ln mχ

me
· σ(χχ̄ → e+e−), Eγ ∝ mχ

To avoid overproduction of MeV photons: mχ ≤ 20 MeV!
Beacom, Bell, Bertone, Phys. Rev. Lett 94, 171301 (2005)

Bound reduced to ∼ 3 MeV if photons produced during
slow–down of e± are included. Beacom & Yuksel, Phys. Rev. Lett. 97,

071102 (2006)
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Particle physics model

To explain flux of 511 keV photons: need

10−3 fb ≤ vσ(χχ̄ → e+e−) ·
(

1 MeV

mχ

)2

· κ ≤ 1 fb

κ = 1 (2) if χ = χ̄ (χ 6= χ̄). Expanded range in Boehm et
al. by factor 10 in both directions. Note: ρχ fixed from
galactic modelling =⇒ nχ ∝ 1/mχ.
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Particle physics model

To explain flux of 511 keV photons: need

10−3 fb ≤ vσ(χχ̄ → e+e−) ·
(

1 MeV

mχ

)2

· κ ≤ 1 fb

κ = 1 (2) if χ = χ̄ (χ 6= χ̄). Expanded range in Boehm et
al. by factor 10 in both directions. Note: ρχ fixed from
galactic modelling =⇒ nχ ∝ 1/mχ.

Mass range for DM particle χ:

me ≤ mχ ≤ 20 MeV

Taken together, these constraints imply that χ was in
thermal equilibrium (using TR > 0.7 MeV from BBN;
Guidice et al. 2001)
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Particle physics model (cont’d)

To get right thermal relic density, χ annihilation cross
section at decoupling must have been much higher than
the current cross section into e+e− pairs
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Particle physics model (cont’d)

To get right thermal relic density, χ annihilation cross
section at decoupling must have been much higher than
the current cross section into e+e− pairs

Strongly hints at annihilation from P−wave only:
vσ ∝ v2. Note: v2

dec. ∼ 0.1, v2
now ∼ 10−6.

Simplest realization: χ annihilation mediated by
exchange of spin–1 Boson U ; χ is complex scalar or
Majorana spin–1/2 fermion. (Dirac fermion would
annihilate from S−wave!)

Relic density essentially fixes product g2
χ

(
g2
eR

+ g2
eL

)
of

U−boson couplings.

Dark Matter – p. 45/51



Model building aspects

For most purposes, scalar χ ≃ Majorana χ with
geL

= geR
: both are pure P−wave
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Model building aspects

For most purposes, scalar χ ≃ Majorana χ with
geL

= geR
: both are pure P−wave

ge − 2 constraint implies gχ > geR
, geL

gχ ≫ geR
, geL

natural if U couples to electrons only
through mixing with γ, Z!

If total gauge group G = GSM × GU : SU(2) invariance
implies geL

= gνe
: took geL

= 0 most of the time.

DM and ge − 2 constraints are compatible only for
MU <∼ 0.2 GeV!

Did not attempt to build full (renormalizable) model.
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Tests at low energye+e− colliders

U−boson must couple to electrons: can be produced at
e+e− colliders!

e+

e−

γ

U

e+

e−

γ

U
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Tests at low energye+e− colliders

U−boson must couple to electrons: can be produced at
e+e− colliders!

e+

e−

γ

U

e+

e−

γ

U

dσ(e+e− → Uγ)

d cos θ
=

α
(
g2

eL
+ g2

eR

)

4s (1 − y) sin2 θ

[
2
(
1 + y2

)
− sin2 θ (1 − y)2]

y =
M2

U

s
< 0.04 even at DAΦNE.
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Remarks

Cross section ∝ 1/s =⇒ lower energy is in principle
better!
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Remarks

Cross section ∝ 1/s =⇒ lower energy is in principle
better!

However:
R

Ldt
s

∣∣∣
DAΦNE

<
R

Ldt
s

∣∣∣
B−factories

: B−factories

should have better chance

Two possible final states:
U → e+e−: have e+e−γ final state
U → νν̄, χχ̄: have γ+ ‘nothing’ final state (trigger??)

Dark Matter – p. 48/51



Reach for DAΦNE
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Summary

Lots of different particle DM candidates have been
suggested; not all are equally plausible
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Neutralinos in mSUGRA remain well motivated, viable
candidate

Standard sterile ν’s probably excluded; MeV DM
testable at low energy colliders; gravitino/axino DM
constrained by BBN

Thermal production of DM particles is most attractive
mechanism: least dependent on details of cosmology

If DM is made from thermal WIMPs: lower bound on TR

increases by factor ∼ 104

WIMPs can be detected in a variety of ways; once
detected, allow new probes of Universe
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