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1 Introduction : History of the Universe
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universe, e.g. in superstring theory. Few predictions, no
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1 Introduction : History of the Universe

Before the Big Bang: Speculations about pre–BB
universe, e.g. in superstring theory. Few predictions, no
known connections with collider physics.

Inflation: Scale factor (“radius”) R −→ eNR, N ≥ 60

Universe was dominated by vacuum energy; empty at
end of inflation
Quantum fluctuations can cause density perturbations:
confirmed by CMB observations (WMAP, . . . )
Scalar fields can get large vevs due to these
fluctuations
At least one model maybe testable at the LHC!
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History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Baryogenesis: Happened sometime after end of
inflation

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Baryogenesis: Happened sometime after end of
inflation

Many models exist

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Baryogenesis: Happened sometime after end of
inflation

Many models exist
Work at different temperatures

Astroparticle Physics – p. 4/29



History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR >

∼ 3 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Baryogenesis: Happened sometime after end of
inflation

Many models exist
Work at different temperatures
Some models make predictions for colliders!
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History (cont.d)

Creation of Dark Matter: Happened sometime after end
of inflation

Many models exist
Work at different temperatures
Most models have connections to collider physics!

Electroweak Phase Transition: Happened at
T = TEW ≃ 100 GeV, if TR > TEW

May be related to baryogenesis
May have some connection to collider physics
(sphalerons)
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T = TQCD ≃ 170 MeV, if TR > TQCD
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History (cont.d)

QCD phase transition: Happened at
T = TQCD ≃ 170 MeV, if TR > TQCD

Related to dynamics of heavy ion collisions,
“soft” QCD (at negligible baryon density)

Big Bang Nucleosynthesis (BBN): Started at T ≃ 1 MeV

Constrains many extensions of SM, if TR was
sufficiently high to create new particles
Sets lower bound on TR, if standard BBN is essentially
correct

Matter–Radiation Equilibrium: Happened at T ≃ 3 eV.

Energy density of the Universe begins to be
dominated by (dark) matter
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History (cont.d)

Decoupling of Matter and Radiation: Happened at
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History (cont.d)

Decoupling of Matter and Radiation: Happened at
T ≃ 0.3 eV

“Last scattering” of CMB photons
Visible structures (galaxies etc.) start to form

Equilibrium of Matter and Dark Energy: Probably
happened at redshift z ≃ 1 (T ≃ 6 · 10−4 eV).

Nobody knows when (or if) Dark Energy was created
If Dark Energy ≃ const: Plays no role for T > 0.1 eV
In models with dynamical Dark Energy
(“quintessence”): Can affect dynamics of BBN,
creation of Dark Matter, . . .
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2 Inflation
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2 Inflation

Most models of inflation are not testable at colliders

Recent counter–example: “MSSM inflation”, aka
“A−term inflation” Allahverdi et al., hep–ph/0605035, 0608296, 0610069,

0610134, 0610243, 0702112

Basic idea: Use “flat directions” in space of scalar
MSSM fields as inflationary potential: No quartic terms
in potential; bi– and trilinear terms from soft SUSY
breaking

Establishes link between inflationary potential and
sparticle masses!

SUSY can also play crucial role in re–heating Allahverdi et

al., hep–ph/0505050, 0512227, 0603244
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3 Dark Energy

Origin and nature of DE are completely unclear:
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3 Dark Energy

Origin and nature of DE are completely unclear:
Biggest mystery in current cosmology!

In 4 dimensions: No connection to collider physics

In models with small extra dimensions: Connections to
collider physics may exist (radion–Higgs mixing;
spectrum of KK states), but no example is known (to
me)

In models with large extra dimension: LHC may be
black hole factory; “cosmon” should be produced in bh
decay
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4 Baryogenesis

Reminder: Sakharov conditions: Need
Violation of C and CP symmetries
Violation of baryon or lepton number
Deviation from thermal equilibrium (or CPT violation)

Many models work at very high temperatures (GUT
baryogenesis; most leptogenesis; most Affleck–Dine):
no direct connection to collider physics; indirect
connections in some models possible

Some models work at rather low temperature: can be
tested at colliders! Will discuss two such models.
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Leptogenesis with degenerate neutrinos

Basic idea of leptogenesis:
Out–of–equilibrium decay of heavy “right–handed”
neutrinos Ni creates lepton asymmetry
Is partially transformed to baryon asymmetry via elw
sphaleron transitions

Standard thermal leptogensis with hierarchical heavy
neutrinos reqires TR ≥ M1 ≥ 108 GeV: Not testable at
colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al.

2004

If M2 − M1 ≪ M1: effective CP violation enhanced: Can
have M1 ≃ TeV! Pilaftsis 1997/9; Pilaftsis & Underwood 2004
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Leptogenesis (cont.d)

Ni

H

ℓj

Nk

ℓm (ℓ̄m)

H (H̄)

Enhanced for i = 1, k = 2
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Leptogenesis (cont.d)

Ni

H

ℓj

Nk

ℓm (ℓ̄m)

H (H̄)

Enhanced for i = 1, k = 2

Ni only couple to Higgs boson(s): productions at
colliders not easy!

If MN1,2
<
∼ 500 GeV: may see CPV at LHC! Bray et al.,

hep-ph/0702294

Other scenarios with low-scale leptogenesis: Grossman,

Kashti, Nir, Roulet 2004; Hambye et al. 2003; Raidal, Strumia, Turzynski 2004

Astroparticle Physics – p. 12/29



Electroweak Baryogenesis
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Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of
exact SU(2). Baryon asymmetry generated during
transport through bubble walls.

B violation: elw sphalerons
Out of equlibrium: Elw. phase transition was strongly
1st order
CP violation: in bubble wall

Does not work in SM: cross–over (no phase transition)
for mH >

∼ 60 GeV!
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Mechanism can work in MSSM! Requirements:
Light SM–like Higgs: mh <

∼ 120 GeV: testable at LHC!

Light stop: mt̃1
<
∼ mt: testable at LHC?

Little t̃L − t̃R mixing: θt̃ ≃ π/2

CP violation in χ̃ sector: φµ >
∼ 0.1, |M2|, |µ|<∼ 150 GeV

Remains to be checked:
Determination of θt̃ in presence of CP violation
Determination of φµ in relevant region of parameter
space
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5 Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)
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5 Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.105+0.007

−0.013 Spergel et al., astro–ph/0603449
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Density of thermal DM

Decoupling of DM particle χ defined by:

nχ(Tf )〈vσ(χχ → any)〉 = H(Tf )

nχ: χ number density ∝ e−mχ/T

v: Relative velocity
〈. . . 〉: Thermal average
H: Hubble parameter; in standard cosmology ∼ T 2/MPlanck
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Density of thermal DM

Decoupling of DM particle χ defined by:

nχ(Tf )〈vσ(χχ → any)〉 = H(Tf )

nχ: χ number density ∝ e−mχ/T

v: Relative velocity
〈. . . 〉: Thermal average
H: Hubble parameter; in standard cosmology ∼ T 2/MPlanck

Gives average relic mass density

Ωχ ∝ 1
〈vσ(χχ→any)〉

Gives roughly right result for weak cross section!
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Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders
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Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders

H at time of χ decoupling is known: partly testable at
colliders
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Thermal WIMPs at colliders: Generalities

Only 〈vσ(χχ → anything)〉 is known
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Thermal WIMPs at colliders: Generalities

Only 〈vσ(χχ → anything)〉 is known

No guarantee that χ couples to light quarks or electrons
(which we can collide)

At LHC: direct χ pair production is undetectable

Hence can generally only test models with “Überbau” of
heavier, strongly interacting new particles decaying into
χ

Such particles exist for best–motivated χ candidates:
SUSY, Little Higgs, universal extra dimension
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SUSY Dark Matter

Conditions for successful DM candidate:

Must be stable ⇒ χ = LSP and R−parity is conserved
(if LSP in visible sector)

Astroparticle Physics – p. 19/29



SUSY Dark Matter

Conditions for successful DM candidate:

Must be stable ⇒ χ = LSP and R−parity is conserved
(if LSP in visible sector)

Exotic isotope searches ⇒ χ must be neutral

Astroparticle Physics – p. 19/29



SUSY Dark Matter

Conditions for successful DM candidate:

Must be stable ⇒ χ = LSP and R−parity is conserved
(if LSP in visible sector)

Exotic isotope searches ⇒ χ must be neutral

Must satisfy DM search limits ⇒ χ 6= ν̃

And the winner is . . .

Astroparticle Physics – p. 19/29



SUSY Dark Matter

Conditions for successful DM candidate:

Must be stable ⇒ χ = LSP and R−parity is conserved
(if LSP in visible sector)

Exotic isotope searches ⇒ χ must be neutral

Must satisfy DM search limits ⇒ χ 6= ν̃

And the winner is . . .
χ = χ̃0

1
(or in hidden sector)
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χ̃0

1
relic density

To predict thermal χ̃0
1 relic density: have to know

σ(χ̃0
1χ̃

0
1 −→ SM particles)

In general, this requires knowledge of almost all sparticle and
Higgs masses and of all couplings of the LSP!
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χ̃0

1
relic density

To predict thermal χ̃0
1 relic density: have to know

σ(χ̃0
1χ̃

0
1 −→ SM particles)

In general, this requires knowledge of almost all sparticle and
Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

M0 =

0

B

B

B

B

B

@

M1 0 −MZ cosβ sinθW MZ sinβ sinθW

0 M2 MZ cosβ cosθW −MZ sinβ cosθW

−MZ cosβ sinθW MZ cosβ cosθW 0 −µ

MZ sinβ sinθW −MZ sinβ cosθW −µ 0

1

C

C

C

C

C

A
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χ̃0

1
relic density

To predict thermal χ̃0
1 relic density: have to know

σ(χ̃0
1χ̃

0
1 −→ SM particles)

In general, this requires knowledge of almost all sparticle and
Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

M0 =

0

B

B

B

B

B

@

M1 0 −MZ cosβ sinθW MZ sinβ sinθW

0 M2 MZ cosβ cosθW −MZ sinβ cosθW

−MZ cosβ sinθW MZ cosβ cosθW 0 −µ

MZ sinβ sinθW −MZ sinβ cosθW −µ 0

1

C

C

C

C

C

A

=⇒ Can determine decomposition of χ̃
0
1 by studying χ̃

±

1 , χ̃
0
2, χ̃

0
3.
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χ̃0

1
annihilation in the MSSM

m
f̃L

, m
f̃R

, θ
f̃
: Needed for χ̃0

1χ̃
0
1 → ff̄
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m
f̃L

, m
f̃R

, θ
f̃
: Needed for χ̃0

1χ̃
0
1 → ff̄

mh, mH , mA, α, tanβ: Needed for
χ̃0

1χ̃
0
1 → ff̄ , V V, V φ, φφ (V : Massive gauge boson; φ:

Higgs boson).
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If coannihilation is important: final answer depends
exponentially on mass difference
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χ̃0

1
annihilation in the MSSM

m
f̃L

, m
f̃R

, θ
f̃
: Needed for χ̃0

1χ̃
0
1 → ff̄

mh, mH , mA, α, tanβ: Needed for
χ̃0

1χ̃
0
1 → ff̄ , V V, V φ, φφ (V : Massive gauge boson; φ:

Higgs boson).

For many masses: lower bounds may be sufficient

If coannihilation is important: final answer depends
exponentially on mass difference

Parameters in Higgs and squark sector are also needed
to predict χ̃0

1 detection rate, i.e. σ(χ̃0
1N → χ̃0

1N)
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Impact on particle physics (mSUGRA)

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

Sparticle searches, in particular χ̃±
1 , τ̃1 searches at

LEP: σ < 20 fb
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Parameter space is constrained by:

Sparticle searches, in particular χ̃±
1 , τ̃1 searches at

LEP: σ < 20 fb

Higgs searches, in particular light CP–even Higgs
search at LEP (parameterized)

Brookhaven gµ − 2 measurement: Take envelope of
constraints using τ and e+e− data for SM prediction

Radiative b decays (BELLE, . . . ): Take
2.65 · 10−4 ≤ B(b → sγ) ≤ 4.45 · 10−4
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Impact on particle physics (mSUGRA)

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

Sparticle searches, in particular χ̃±
1 , τ̃1 searches at

LEP: σ < 20 fb

Higgs searches, in particular light CP–even Higgs
search at LEP (parameterized)

Brookhaven gµ − 2 measurement: Take envelope of
constraints using τ and e+e− data for SM prediction

Radiative b decays (BELLE, . . . ): Take
2.65 · 10−4 ≤ B(b → sγ) ≤ 4.45 · 10−4

Simple CCB constraints (at weak scale only)
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mSUGRA, m
t
 = 178 GeV, tanβ = 10, µ>0, A

0
 = 0

All constraints except DM included

τ∼ 1  is LSP

h is too light

χ~+

1
 is too light
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Predicting Ωχ̃
0

1
h2 from LHC data

The precision with which Ωχ̃0

1
h2 can be predicted strongly

depends on SUSY parameters: black Battaglia et al., hep–ph/0602187
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“Bulk region”: χ̃0
1χ̃

0
1 → ℓ+ℓ− via ℓ̃ exchange, needs rather

light χ̃0
1, ℓ̃: Ωχ̃0

1
h2 to 7%!
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1 → ℓ+ℓ− via ℓ̃ exchange, needs rather

light χ̃0
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“Focus point” region: χ̃0
1χ̃
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1 → V V,Zh (V = Z,W±) via h̃

component of χ̃0
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Predicting Ωχ̃
0

1
h2 from LHC data

The precision with which Ωχ̃0

1
h2 can be predicted strongly

depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

“Bulk region”: χ̃0
1χ̃

0
1 → ℓ+ℓ− via ℓ̃ exchange, needs rather

light χ̃0
1, ℓ̃: Ωχ̃0

1
h2 to 7%!

“Focus point” region: χ̃0
1χ̃

0
1 → V V,Zh (V = Z,W±) via h̃

component of χ̃0
1: Ωχ̃0

1
h2 to 82%

“Co–annihilation region”: mχ̃0

1
≃ mτ̃1: Ωχ̃0

1
h2 to 170%

“Funnel region”: mχ̃0

1
≃ mA/2: Ωχ̃0

1
h2 to 400%

Based on spectrum information only!
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Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density
if LSP is in hidden or invisible sector. It could be:

The axino Covi et al., hep-ph/9905212 . . .
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Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density
if LSP is in hidden or invisible sector. It could be:

The axino Covi et al., hep-ph/9905212 . . .

The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and

Roszkowski; . . .

A modulino
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Hidden Sector DM (contd.)

Unfortunately,

ΩDM can no longer be predicted from particle physics
alone; e.g. ΩG̃h2 ∝ Treheat
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Hidden Sector DM (contd.)

Unfortunately,

ΩDM can no longer be predicted from particle physics
alone; e.g. ΩG̃h2 ∝ Treheat

hidden sector LSP may leave no imprint at colliders,
unless lightest visible sparticle (LVSP) is charged; LVSP
is quite long-lived

Astroparticle Physics – p. 27/29



Hidden Sector DM (contd.)

Unfortunately,

ΩDM can no longer be predicted from particle physics
alone; e.g. ΩG̃h2 ∝ Treheat

hidden sector LSP may leave no imprint at colliders,
unless lightest visible sparticle (LVSP) is charged; LVSP
is quite long-lived

Detection of hidden sector DM seems impossible:
Cross sections are way too small!
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Nonstandard cosmology

Can either reduce or increase density of stable χ̃0
1
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Nonstandard cosmology

Can either reduce or increase density of stable χ̃0
1

Increase: through incease of H(Tf ); or through
non-thermal χ̃0

1 production mechanisms.

Reduce: through decrease of H(Tf ); through late
entropy production; or through low Treheat.

None of these mechanisms in general has observable
consequences (except DM density).

If χ̃0
1 makes DM: Can use measurements at colliders to

constrain cosmology!
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6 Summary

Dark Energy: Difficult to probe at colliders; perhaps
some possibilities if D > 4
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6 Summary

Dark Energy: Difficult to probe at colliders; perhaps
some possibilities if D > 4

Baryogenesis: Some models can be tested at colliders,
others cannot

Dark Matter:
Many models can be tested at colliders, some
cannot
SUSY WIMPs: Relic density often depends very
sensitively on parameters: need very accurate
measurements in collider experiments!
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