Astroparticle Physics at Colliders

Manuel Drees

Bonn University

Introduction: A brief history of the universe
 Inflation

- 2) Inflation
- 3) Dark Energy

- 2) Inflation
- 3) Dark Energy
- 4) Baryogenesis

- 2) Inflation
- 3) Dark Energy
- 4) Baryogenesis
- 5) Dark Matter

- 2) Inflation
- 3) Dark Energy
- 4) Baryogenesis
- 5) Dark Matter
- 6) Summary

Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$

- Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation

- Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, ...)

- Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, ...)
 - Scalar fields can get large vevs due to these fluctuations

- Before the Big Bang: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, ...)
 - Scalar fields can get large vevs due to these fluctuations
 - At least one model maybe testable at the LHC!

Reheating: (Re-)populates Universe with particles.
Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures

- Reheating: (Re-)populates Universe with particles.
 Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Some models make predictions for colliders!

Creation of <u>Dark Matter</u>: Happened sometime after end of inflation

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T = T_{\rm EW} \simeq 100$ GeV, if $T_{\rm R} > T_{\rm EW}$

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T = T_{\rm EW} \simeq 100$ GeV, if $T_{\rm R} > T_{\rm EW}$
 - May be related to baryogenesis

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T = T_{\rm EW} \simeq 100$ GeV, if $T_{\rm R} > T_{\rm EW}$
 - May be related to baryogenesis
 - May have some connection to collider physics (sphalerons)

• QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - Sets lower bound on $T_{\rm R}$, if standard BBN is essentially correct

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - Sets lower bound on $T_{\rm R}$, if standard BBN is essentially correct
- Matter-Radiation Equilibrium: Happened at $T \simeq 3$ eV.

- QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_{R} > T_{QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1 \text{ MeV}$
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - Sets lower bound on $T_{\rm R}$, if standard BBN is essentially correct
- Matter–Radiation Equilibrium: Happened at $T \simeq 3$ eV.
 - Energy density of the Universe begins to be dominated by (dark) matter

• Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \text{ eV})$.

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \text{ eV})$.
 - Nobody knows when (or if) Dark Energy was created

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \text{ eV})$.
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy \simeq const: Plays no role for T > 0.1 eV

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \text{ eV})$.
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy \simeq const: Plays no role for T > 0.1 eV
 - In models with dynamical Dark Energy ("quintessence"): Can affect dynamics of BBN, creation of Dark Matter, ...

Most models of inflation are not testable at colliders

- Most models of inflation are not testable at colliders
- Recent counter-example: "MSSM inflation", aka "A-term inflation" Allahverdi et al., hep-ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112

- Most models of inflation are not testable at colliders
- Recent counter-example: "MSSM inflation", aka "A-term inflation" Allahverdi et al., hep-ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112
- Basic idea: Use "flat directions" in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi– and trilinear terms from soft SUSY breaking

- Most models of inflation are not testable at colliders
- Recent counter-example: "MSSM inflation", aka
 "A-term inflation" Allahverdi et al., hep-ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112
- Basic idea: Use "flat directions" in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi– and trilinear terms from soft SUSY breaking
- Establishes link between inflationary potential and sparticle masses!

- Most models of inflation are not testable at colliders
- Recent counter-example: "MSSM inflation", aka
 "A-term inflation" Allahverdi et al., hep-ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112
- Basic idea: Use "flat directions" in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi– and trilinear terms from soft SUSY breaking
- Establishes link between inflationary potential and sparticle masses!
- SUSY can also play crucial role in re-heating Allahverdi et al., hep-ph/0505050, 0512227, 0603244

Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics
- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics
- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)
- In models with large extra dimension: LHC may be black hole factory; "cosmon" should be produced in bh decay

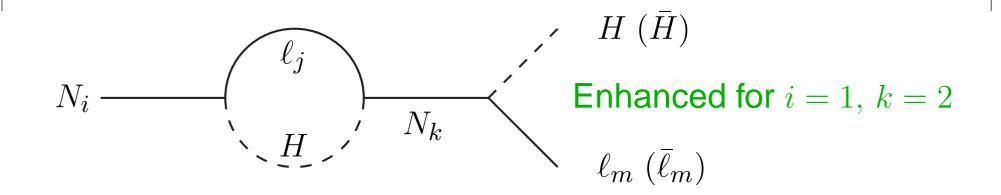
- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries

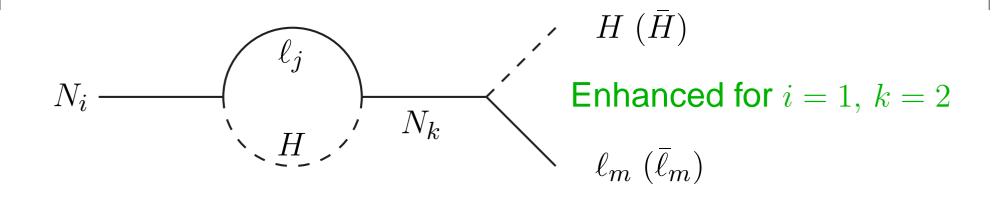
- Violation of C and CP symmetries
- Violation of baryon or lepton number

- Violation of C and CP symmetries
- Violation of baryon or lepton number
- Deviation from thermal equilibrium (or CPT violation)

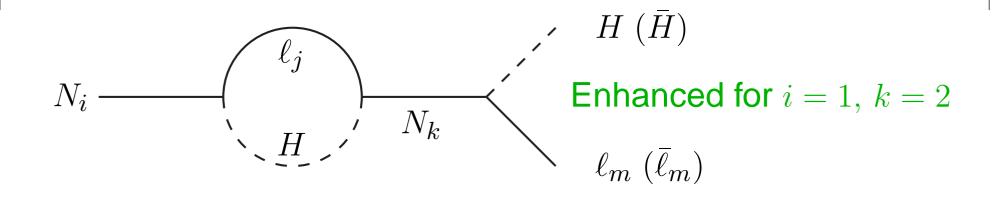
- Violation of C and CP symmetries
- Violation of baryon or lepton number
- Deviation from thermal equilibrium (or CPT violation)
- Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): no direct connection to collider physics; indirect connections in some models possible

- Violation of C and CP symmetries
- Violation of baryon or lepton number
- Deviation from thermal equilibrium (or CPT violation)
- Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): no direct connection to collider physics; indirect connections in some models possible
- Some models work at rather low temperature: can be tested at colliders! Will discuss two such models.

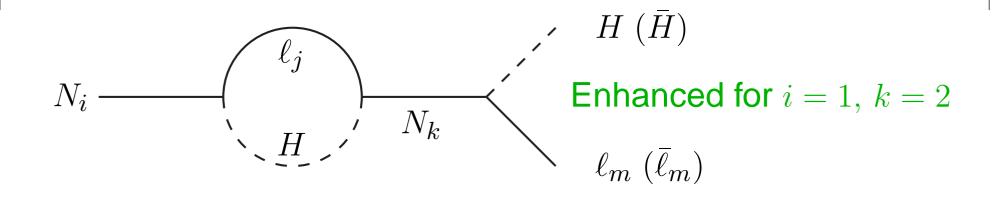

Basic idea of leptogenesis:


- Basic idea of leptogenesis:
 - Out–of–equilibrium decay of heavy "right–handed" neutrinos N_i creates lepton asymmetry

- Basic idea of leptogenesis:
 - Out–of–equilibrium decay of heavy "right–handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions


- Basic idea of leptogenesis:
 - Out–of–equilibrium decay of heavy "right–handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions
- Standard thermal leptogensis with hierarchical heavy neutrinos regires $T_{\rm R} \ge M_1 \ge 10^8$ GeV: Not testable at Colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004

- Basic idea of leptogenesis:
 - Out–of–equilibrium decay of heavy "right–handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions
- Standard thermal leptogensis with hierarchical heavy neutrinos reqires $T_{\rm R} \ge M_1 \ge 10^8$ GeV: Not testable at Colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004
- If $M_2 M_1 \ll M_1$: effective CP violation enhanced: Can have $M_1 \simeq \text{TeV}!$ Pilaftsis 1997/9; Pilaftsis & Underwood 2004



N_i only couple to Higgs boson(s): productions at colliders not easy!

- N_i only couple to Higgs boson(s): productions at colliders not easy!
- If $M_{N_{1,2}} \lesssim 500$ GeV: may see CPV at LHC! Bray et al., hep-ph/0702294

- N_i only couple to Higgs boson(s): productions at colliders not easy!
- If $M_{N_{1,2}} \lesssim 500$ GeV: may see CPV at LHC! Bray et al., hep-ph/0702294
- Other scenarios with low-scale leptogenesis: Grossman, Kashti, Nir, Roulet 2004; Hambye et al. 2003; Raidal, Strumia, Turzynski 2004

Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - *B* violation: elw sphalerons

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equilibrium: Elw. phase transition was strongly 1st order

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equilibrium: Elw. phase transition was strongly 1st order
 - CP violation: in bubble wall

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equilibrium: Elw. phase transition was strongly 1st order
 - CP violation: in bubble wall
- Does not work in SM: cross-over (no phase transition) for $m_H \gtrsim 60$ GeV!

Baryogenesis (cont.d)

Mechanism can work in MSSM! Requirements:

Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!

Mechanism can work in MSSM! Requirements:

- Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
- Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?

Mechanism can work in MSSM! Requirements:

- Light SM-like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
- Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
- Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150 \text{ GeV}$
- Remains to be checked:

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV
- Remains to be checked:
 - Determination of $\theta_{\tilde{t}}$ in presence of CP violation

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150 \text{ GeV}$
- Remains to be checked:
 - Determination of $\theta_{\tilde{t}}$ in presence of CP violation
 - Determination of ϕ_{μ} in relevant region of parameter space

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
 - Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
 - Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f) \langle v\sigma(\chi\chi \to \mathrm{any}) \rangle = H(T_f)$$

- n_{χ} : χ number density $\propto e^{-m_{\chi}/T}$
- v: Relative velocity
- $\langle \dots \rangle$: Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f) \langle v\sigma(\chi\chi \to \mathrm{any}) \rangle = H(T_f)$$

 n_{χ} : χ number density $\propto e^{-m_{\chi}/T}$ v: Relative velocity $\langle \dots \rangle$: Thermal average H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$

Gives average relic mass density

$$\Omega_{\chi} \propto \frac{1}{\langle v\sigma(\chi\chi \to \mathrm{any}) \rangle}$$

Gives roughly right result for weak cross section!

Assumptions

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders

• Only $\langle v\sigma(\chi\chi \rightarrow \text{anything}) \rangle$ is known

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with "Überbau" of heavier, strongly interacting new particles decaying into \u03c0

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with "Überbau" of heavier, strongly interacting new particles decaying into \u03c0
- Such particles exist for best–motivated χ candidates: SUSY, Little Higgs, universal extra dimension

Conditions for successful DM candidate:

Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is ...

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is ...

$$\chi = \tilde{\chi}_1^0$$

(or in hidden sector)

${\tilde \chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

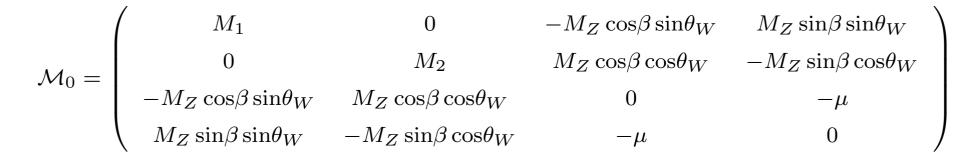
In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

${\tilde \chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP! Neutralino mass matrix in the MSSM:


$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

${\tilde \chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP! Neutralino mass matrix in the MSSM:

 \implies Can determine decomposition of $\tilde{\chi}_1^0$ by studying $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$.

• $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V\phi, \phi\phi$ (V: Massive gauge boson; ϕ : Higgs boson).

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 → f\bar{f}, VV, V\phi, \phi\phi$ (V: Massive gauge boson; φ: Higgs boson).
- For many masses: lower bounds may be sufficient

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V \phi, \phi \phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V \phi, \phi \phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference
- Parameters in Higgs and squark sector are also needed to predict $\tilde{\chi}_1^0$ detection rate, i.e. $\sigma(\tilde{\chi}_1^0 N \rightarrow \tilde{\chi}_1^0 N)$

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)

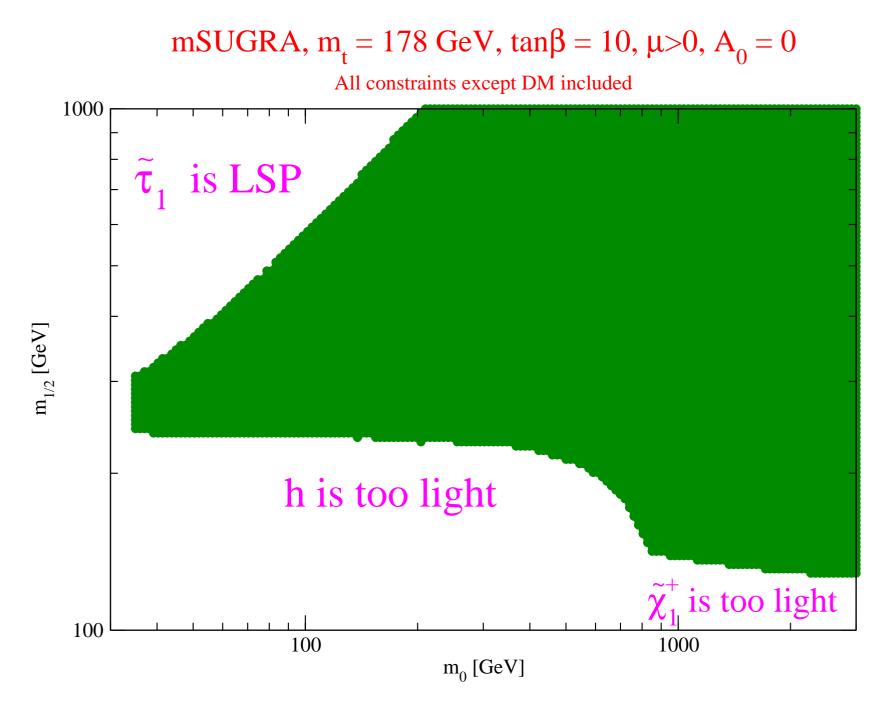
w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

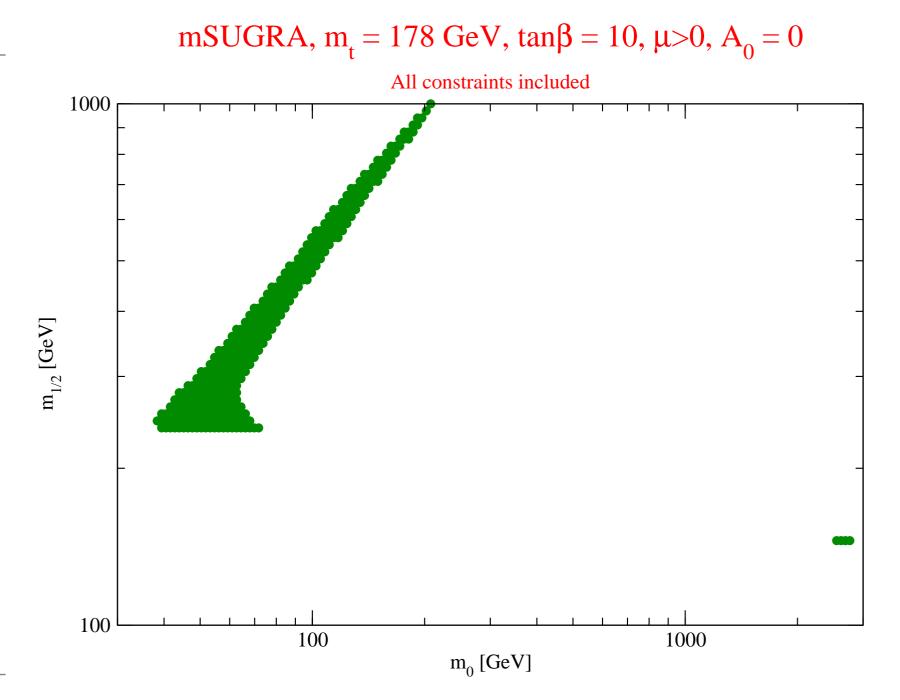
Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:


- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative *b* decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \rightarrow s\gamma) \le 4.45 \cdot 10^{-4}$


Impact on particle physics (mSUGRA)

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative *b* decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \rightarrow s\gamma) \le 4.45 \cdot 10^{-4}$
- Simple CCB constraints (at weak scale only)

The precision with which $\Omega_{\tilde{\chi}_1^0}h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep-ph/0602187

• "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%
- "Funnel region": $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%

The precision with which $\Omega_{\tilde{\chi}_1^0}h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep-ph/0602187

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%
- "Funnel region": $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%

Based on spectrum information only!

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

The axino Covi et al., hep-ph/9905212...

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; …

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; …
- A modulino

Hidden Sector DM (contd.)

Unfortunately,

• $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived
- Detection of hidden sector DM seems impossible: Cross sections are way too small!

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

None of these mechanisms in general has observable consequences (except DM density).

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

None of these mechanisms in general has observable consequences (except DM density).

If $\tilde{\chi}_1^0$ makes DM: Can use measurements at colliders to constrain cosmology!

Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D > 4

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D > 4
- Baryogenesis: Some models can be tested at colliders, others cannot

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D > 4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D > 4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:
 - Many models can be tested at colliders, some cannot

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D > 4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:
 - Many models can be tested at colliders, some cannot
 - SUSY WIMPs: Relic density often depends very sensitively on parameters: need very accurate measurements in collider experiments!