A Supersymmetric Explanation for the Excess of Higgs–Like Events at the LHC and at LEP

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

1 Introduction

1 Introduction

2 Details of the Analysis

- **1** Introduction
- 2 Details of the Analysis
- **3 Results**

- 1 Introduction
- 2 Details of the Analysis

3 Results a) Bounds on Observables **Contents**

- **1** Introduction
- 2 Details of the Analysis

3 Results

- a) Bounds on Observables
- b) Correlations between Observables

Contents

1 Introduction

2 Details of the Analysis

3 Resultsa) Bounds on Observablesb) Correlations between Observables

4 Summary

Announced at CERN on July 4, 2012!

Announced at CERN on July 4, 2012!

Expectations for 125 GeV SM Higgs:

Produced mostly in gluon fusion (90%, via t, b loops); vector boson fusion ($qq \rightarrow qqH_{SM}$) subdominant

Announced at CERN on July 4, 2012!

Expectations for 125 GeV SM Higgs:

- Produced mostly in gluon fusion (90%, via t, b loops); vector boson fusion ($qq \rightarrow qqH_{SM}$) subdominant
- Main decay modes: $H_{\rm SM} \rightarrow b\overline{b}, WW^*$

Announced at CERN on July 4, 2012!

Expectations for 125 GeV SM Higgs:

- Produced mostly in gluon fusion (90%, via t, b loops); vector boson fusion ($qq \rightarrow qqH_{SM}$) subdominant
- Main decay modes: $H_{\rm SM} \rightarrow b\overline{b}, WW^*$
- Biggest significance in $H_{\rm SM} \to \gamma \gamma$ (via W^{\pm}, t, b loops), $H_{\rm SM} \to ZZ^* \to 4\ell$

Announced at CERN on July 4, 2012!

Expectations for 125 GeV SM Higgs:

- Produced mostly in gluon fusion (90%, via t, b loops); vector boson fusion ($qq \rightarrow qqH_{SM}$) subdominant
- Main decay modes: $H_{\rm SM} \rightarrow b\overline{b}, WW^*$
- Biggest significance in $H_{\rm SM} \to \gamma \gamma$ (via W^{\pm}, t, b loops), $H_{\rm SM} \to ZZ^* \to 4\ell$

Agrees with observations!

Discovery Plot (ATLAS)

Mass Determination

Signal Strengths Relative to SM

MSSM Higgs Bosons at LHC and LEP - p. 6/31

Signal Strengths Relative to SM

Here: interpret this in context of SUSY!

Motivation for Supersymmetry

Stabilizes the hierarchy. No quadratic divergences!

Motivation for Supersymmetry

- **Stabilizes the hierarchy.** No quadratic divergences!
- Allows for Grand Unification of SM gauge couplings by

automatically providing just the right additional fields

Motivation for Supersymmetry

- Stabilizes the hierarchy. No quadratic divergences!
- Allows for Grand Unification of SM gauge couplings by automatically providing just the right additional fields
- Naturally includes viable Dark Matter candidate which might even be detectable

The MSSM

Is the simplest potentially realistic SUSY model.

Straightforward supersymmetrization of SM.

The MSSM

- Is the simplest potentially realistic SUSY model. Straightforward supersymmetrization of SM.
- Predicts a superpartner for each SM particle, with $m_{\rm SUSY} \lesssim 1$ TeV: testable at the LHC!

The MSSM

- Is the simplest potentially realistic SUSY model.
 Straightforward supersymmetrization of SM.
- Predicts a superpartner for each SM particle, with $m_{\rm SUSY} \lesssim 1$ TeV: testable at the LHC!
- Predicts the existence of 2nd Higgs doublet. To cancel higgsino contribution to anomalies, and to give masses to all quarks.

The MSSM Higgs sector

• Two doublets H_u , H_d with opposite hypercharge $(Y(H_u) = +1/2)$

The MSSM Higgs sector

- Two doublets H_u , H_d with opposite hypercharge $(Y(H_u) = +1/2)$
- Important parameter: $\tan \beta \equiv \frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle}$; expect $1 \lesssim \tan \beta \lesssim 60$.

The MSSM Higgs sector

- Two doublets H_u , H_d with opposite hypercharge $(Y(H_u) = +1/2)$
- Important parameter: $\tan \beta \equiv \frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle}$; expect $1 \lesssim \tan \beta \lesssim 60$.
- 8 d.o.f. ⇒ 5 physical Higgs bosons after elw symmetry breaking:
 h, H: neutral, CP-even (m_h < m_H); A: neutral, CP-odd;
 H[±]: charged

Assumes CP conservation in Higgs–sfermion sector.

At tree level:

- At tree level:
 - $m_h < \min(M_Z, m_A)$

At tree level:

- $m_h < \min(M_Z, m_A)$
- $m_H > \max(M_Z, m_A)$

At tree level:

- $m_h < \min(M_Z, m_A)$
- $m_H > \max(M_Z, m_A)$

•
$$m_{H^{\pm}}^2 = m_A^2 + M_W^2$$

- At tree level:
 - $m_h < \min(M_Z, m_A)$
 - $m_H > \max(M_Z, m_A)$

•
$$m_{H^{\pm}}^2 = m_A^2 + M_W^2$$

• After loop corrections (mostly stop): $m_h \lesssim 135$ GeV, $m_h > m_A$ possible; $m_{H^{\pm}}$ changed significantly only for large $\tan \beta$.

- At tree level:
 - $m_h < \min(M_Z, m_A)$
 - $m_H > \max(M_Z, m_A)$

•
$$m_{H^{\pm}}^2 = m_A^2 + M_W^2$$

- After loop corrections (mostly stop): $m_h \leq 135$ GeV, $m_h > m_A$ possible; $m_{H^{\pm}}$ changed significantly only for large tan β.
- *h*, *H* have same quantum numbers as SM Higgs boson, but in general different couplings

LEP searches for SM Higgs boson:

LEP searches for SM Higgs boson:

In SM: $H_{\rm SM} \to b\bar{b} \ (\simeq 92\%) \text{ or } \tau^+\tau^- \ (\simeq 7\%)$ $Z \to q\bar{q} \ (\simeq 73\%); \ \nu\bar{\nu} \ (\simeq 18\%); \ \ell^+\ell^- \ (\simeq 6\%); \ \tau^+\tau^- \ (\simeq 3\%)$

LEP searches for SM Higgs boson:

In SM: $H_{\rm SM} \to b\bar{b} \ (\simeq 92\%) \text{ or } \tau^+\tau^- \ (\simeq 7\%)$ $Z \to q\bar{q} \ (\simeq 73\%); \ \nu\bar{\nu} \ (\simeq 18\%); \ \ell^+\ell^- \ (\simeq 6\%); \ \tau^+\tau^- \ (\simeq 3\%)$

Final states: 4 jet ($\simeq 67\%$); $b\bar{b}\nu\bar{\nu}$; $b\bar{b}\ell^+\ell^-$; $\tau^+\tau^- jj$

LEP searches for SM Higgs boson:

In SM: $H_{\rm SM} \to b\bar{b} \ (\simeq 92\%) \text{ or } \tau^+\tau^- \ (\simeq 7\%)$ $Z \to q\bar{q} \ (\simeq 73\%); \ \nu\bar{\nu} \ (\simeq 18\%); \ \ell^+\ell^- \ (\simeq 6\%); \ \tau^+\tau^- \ (\simeq 3\%)$

Final states: 4 jet ($\simeq 67\%$); $b\bar{b}\nu\bar{\nu}$; $b\bar{b}\ell^+\ell^-$; $\tau^+\tau^- jj$

Result: Some evidence for excess events near $m_{\phi} = 98$ GeV (~ 2.3 σ) and $m_{\phi} = 115$ GeV (~ 1.7 σ)

In more detail

Excess near 98 GeV

Has larger significance than the one near 115 GeV

Excess near 98 GeV

- Has larger significance than the one near 115 GeV
- Distributed over all experiments and several final states

Excess near 98 GeV

- Has larger significance than the one near 115 GeV
- Distributed over all experiments and several final states
- Is about 10 times weaker than signal for 98 GeV Higgs in SM

SM needs Supersymmetry to be natural: MSSM!

- SM needs Supersymmetry to be natural: MSSM!
- MSSM contains two CP-even Higgs bosons h, H $(m_h < m_H)$

- SM needs Supersymmetry to be natural: MSSM!
- MSSM contains two CP-even Higgs bosons h, H $(m_h < m_H)$
- Couplings: $g_{hZZ} = g_{H_{SM}ZZ} \sin(\alpha \beta)$ $g_{HZZ} = g_{H_{SM}ZZ} \cos(\alpha - \beta)$

- SM needs Supersymmetry to be natural: MSSM!
- MSSM contains two CP-even Higgs bosons h, H $(m_h < m_H)$

• Couplings:
$$g_{hZZ} = g_{H_{SM}ZZ} \sin(\alpha - \beta)$$

 $g_{HZZ} = g_{H_{SM}ZZ} \cos(\alpha - \beta)$

To explain excess near 98 GeV as Zh production:

0.056	$\leq \sin$	$n^2(\alpha - \beta)$	≤ 0.144
$95~{\rm GeV}$	\leq	m_h	$\leq 101 { m ~GeV}$

First range from statistics, second range guessed

- SM needs Supersymmetry to be natural: MSSM!
- MSSM contains two CP-even Higgs bosons h, H $(m_h < m_H)$

• Couplings:
$$g_{hZZ} = g_{H_{SM}ZZ} \sin(\alpha - \beta)$$

 $g_{HZZ} = g_{H_{SM}ZZ} \cos(\alpha - \beta)$

To explain excess near 98 GeV as Zh production:

 $\begin{array}{rcl} 0.056 &\leq \sin^2(\alpha - \beta) &\leq 0.144 \\ 95 \ \text{GeV} &\leq m_h &\leq 101 \ \text{GeV} \end{array}$

First range from statistics, second range guessed

• By itself implied that H should be discovered at LHC, with $115 \text{ GeV} \le m_H \le 140 \text{ GeV}$: prediction from 2005! MD, hep-ph/0502075

Explanation (cont'd)

If in addition LHC discovery is to be explained by H production: need

 $123 \text{ GeV} \le m_H \le 128 \text{ GeV}$

Explanation (cont'd)

If in addition LHC discovery is to be explained by H production: need

 $123 \text{ GeV} \le m_H \le 128 \text{ GeV}$

To get approximately correct signal strengths, require:

$$0.5 \le R_H^{VV} \le 2.0 \quad (V = W, Z);$$

$$0.5 \le R_H^{\gamma\gamma}.$$

with

$$R_H^{XX} \equiv \frac{\Gamma(H \to gg)}{\Gamma(H_{\rm SM} \to gg)} \cdot \frac{\Gamma(H \to XX)}{\Gamma(H_{\rm SM} \to XX)} \cdot \frac{\Gamma(H_{\rm SM, tot})}{\Gamma(H_{\rm tot})}$$

At tree level, MSSM Higgs spectrum determined by m_A , $\tan \beta$

- At tree level, MSSM Higgs spectrum determined by m_A , $\tan \beta$
- ▲ At loop level, also need to fix parameters of stop (1–loop) and gluino (2–loop) sectors; sbottom for (H, h)bb couplings; stau for H → $\gamma\gamma$

- At tree level, MSSM Higgs spectrum determined by $m_A, \, \tan \beta$
- ▲ At loop level, also need to fix parameters of stop (1–loop) and gluino (2–loop) sectors; sbottom for (H, h)bb couplings; stau for H → $\gamma\gamma$
- Perform random scan over parameters, look for extrema of observables such that constraints on the Higgs sector are satisfied

- At tree level, MSSM Higgs spectrum determined by $m_A, \, \tan \beta$
- ▲ At loop level, also need to fix parameters of stop (1–loop) and gluino (2–loop) sectors; sbottom for (H, h)bb couplings; stau for H → $\gamma\gamma$
- Perform random scan over parameters, look for extrema of observables such that constraints on the Higgs sector are satisfied
- For simplicity: take same soft breaking parameters in \tilde{b}, \tilde{t} sectors.

- At tree level, MSSM Higgs spectrum determined by $m_A, \, \tan \beta$
- ▲ At loop level, also need to fix parameters of stop (1–loop) and gluino (2–loop) sectors; sbottom for (H, h)bb couplings; stau for H → $\gamma\gamma$
- Perform random scan over parameters, look for extrema of observables such that constraints on the Higgs sector are satisfied
- For simplicity: take same soft breaking parameters in \tilde{b}, \tilde{t} sectors.
- All parameters varied directly at weak scale: pMSSM!

Scan Range

Scanned over range:

$$\begin{split} |\mu|, \ m_{\tilde{t}_R}, \ m_{\tilde{t}_L}, \ m_{\tilde{g}}, \ m_{\tilde{\tau}_L}, \ m_{\tilde{\tau}_R} &\leq 5 \text{ TeV}; \\ |\mu|, \ m_{\tilde{t}_1}, \ m_{\tilde{b}_1}, \ m_{\tilde{\tau}_1} \geq 100 \text{ GeV}; \\ |m_{\tilde{t}_1} - m_{\tilde{b}_1}| &\leq 50 \text{ GeV or } \max(m_{\tilde{t}_1}, m_{\tilde{b}_1}) > 300 \text{ GeV}; \\ m_{\tilde{g}} \geq 600 \text{ GeV}; \\ |A_t|, |\mu| &\leq 1.5 \left(m_{\tilde{t}_R} + m_{\tilde{t}_L} \right); \\ |A_\tau|, |\mu| &\leq 1.5 \left(m_{\tilde{\tau}_R} + m_{\tilde{\tau}_L} \right); \\ \delta \rho_{\tilde{t}\tilde{b}} &\leq 2 \cdot 10^{-3} \end{split}$$

Scan Range

Scanned over range:

$$\begin{split} |\mu|, \ m_{\tilde{t}_R}, \ m_{\tilde{t}_L}, \ m_{\tilde{g}}, \ m_{\tilde{\tau}_L}, \ m_{\tilde{\tau}_R} &\leq 5 \text{ TeV}; \\ |\mu|, \ m_{\tilde{t}_1}, \ m_{\tilde{b}_1}, \ m_{\tilde{\tau}_1} \geq 100 \text{ GeV}; \\ |m_{\tilde{t}_1} - m_{\tilde{b}_1}| &\leq 50 \text{ GeV or } \max(m_{\tilde{t}_1}, m_{\tilde{b}_1}) > 300 \text{ GeV}; \\ m_{\tilde{g}} \geq 600 \text{ GeV}; \\ |A_t|, |\mu| &\leq 1.5 \left(m_{\tilde{t}_R} + m_{\tilde{t}_L} \right); \\ |A_\tau|, |\mu| &\leq 1.5 \left(m_{\tilde{\tau}_R} + m_{\tilde{\tau}_L} \right); \\ \delta \rho_{\tilde{t}\tilde{b}} &\leq 2 \cdot 10^{-3} \end{split}$$

Additional constraints: ATLAS $t \to H^+b$ search; CMS $A, H, h \to \tau^+\tau^-$ search

Scenario is viable!

Scenario is viable!

 $\begin{array}{l} 120 \; \mathrm{GeV} \leq m_{H^{\pm}} \leq 170 \; \mathrm{GeV} \\ 96 \; \mathrm{GeV} \leq m_A \leq 152 \; \mathrm{GeV} \end{array}$

To saturate upper bound: need very large μ , large $-A_t$, large $\tilde{t}_L - \tilde{t}_R$ mass splitting, $\tan \beta \simeq 6$

Scenario is viable!

 $\begin{array}{l} 120 \; \mathrm{GeV} \leq m_{H^{\pm}} \leq 170 \; \mathrm{GeV} \\ 96 \; \mathrm{GeV} \leq m_A \leq 152 \; \mathrm{GeV} \end{array}$

To saturate upper bound: need very large μ , large $-A_t$, large $\tilde{t}_L - \tilde{t}_R$ mass splitting, $\tan \beta \simeq 6$

$5.5 \le \tan\beta \le 12.5$

Lower bound from ATLAS $t \rightarrow H^+b$ searches, upper bound from CMS di-tau searches

Scenario is viable!

 $120 \text{ GeV} \le m_{H^{\pm}} \le 170 \text{ GeV}$ $96 \text{ GeV} \le m_A \le 152 \text{ GeV}$

To saturate upper bound: need very large μ , large $-A_t$, large $\tilde{t}_L - \tilde{t}_R$ mass splitting, $\tan \beta \simeq 6$

$5.5 \le \tan\beta \le 12.5$

Lower bound from ATLAS $t \rightarrow H^+b$ searches, upper bound from CMS di-tau searches

 $0.2 \le R_H^{\tau\tau} \le 5.7$: Large deviation from SM possible!

Scenario is viable!

 $\begin{array}{l} 120 \; \mathrm{GeV} \leq m_{H^{\pm}} \leq 170 \; \mathrm{GeV} \\ 96 \; \mathrm{GeV} \leq m_A \leq 152 \; \mathrm{GeV} \end{array}$

To saturate upper bound: need very large μ , large $-A_t$, large $\tilde{t}_L - \tilde{t}_R$ mass splitting, $\tan \beta \simeq 6$

$5.5 \le \tan\beta \le 12.5$

Lower bound from ATLAS $t \rightarrow H^+b$ searches, upper bound from CMS di-tau searches

 $0.2 \le R_H^{\tau\tau} \le 5.7$: Large deviation from SM possible!

 $0.66 \leq \frac{R_H^{\gamma\gamma}}{R_H^{VV}} \leq 1.3$: quite SM–like

Bounds on Observables (cont.d)

 $0.12 \le R_h^{\tau\tau} \le 3.4$: Probably difficult to detect, since $m_h - M_Z \le 7$ GeV!

Bounds on Observables (cont.d)

 $0.12 \le R_h^{\tau\tau} \le 3.4$: Probably difficult to detect, since $m_h - M_Z \le 7$ GeV!

 $|A_t| + |\mu| \ge 2 \text{ TeV}; m_{\tilde{t}_1} + m_{\tilde{t}_2} \ge 900 \text{ GeV}:$ needs some finetuning!

Increasing the $\gamma\gamma$ Signal

• Increase production rate $\propto \Gamma(H \to gg)$: Also increases $VV^*, \ \tau^+\tau^-$ signals

Increasing the $\gamma\gamma$ Signal

- Increase production rate $\propto \Gamma(H \to gg)$: Also increases $VV^*, \ \tau^+\tau^-$ signals
- Reduce $\Gamma_{tot}(H)$: Also increases VV^* signals, since $\Gamma(H \to VV^*) \propto \cos^2(\alpha \beta)$ is basically fixed

Increasing the $\gamma\gamma$ Signal

- Increase production rate $\propto \Gamma(H \to gg)$: Also increases $VV^*, \ \tau^+\tau^-$ signals
- Reduce $\Gamma_{tot}(H)$: Also increases VV^* signals, since $\Gamma(H \to VV^*) \propto \cos^2(\alpha \beta)$ is basically fixed
- Increase $\Gamma(H \rightarrow \gamma \gamma)$: Difficult to do in the MSSM, since *W* loops are dominant.

Correlations between parameters

Modest radiative corrections due to bounds on $A_t/m_{\tilde{t}}, \mu/m_{\tilde{t}}$.

Upper bound on $m_{\tilde{t}_1}$ if $m_A > 110 \text{ GeV}$

Quite difficult to have $|\mu| < 0.5$ TeV;

Quite difficult to have $|\mu| < 0.5 \text{ TeV}$; $R_H^{\gamma\gamma} > 1 \text{ requires } |\mu| > 1 \text{ TeV}$

 \tilde{t}, \tilde{b} loops affect Higgs partial widths significantly only for $m_{\tilde{q}} \leq 300 \text{ GeV}$ other than through Higgs mixing

Upper bound on ratio slowly decreases with increasing R_{H}^{VV}

 $\begin{array}{c} \mbox{Requiring (e.g.)} \ R_{H}^{\tau\tau} < 3 \ \mbox{would further reduce upper bound} \\ \hline \mbox{on } R_{h}^{\tau\tau} \end{array}$

Imposing a lower bound on the ratio would further reduce upper bound on $R_h^{ au au}$

MSSM Higgs Bosons at LHC and LEP - p. 28/31
Correlations (cont.d)

Can simultaneously increase importance of $\gamma\gamma$ signal and reduce size of di-tau signal!

Benchmark Points

quantity	Α	В	С
aneta	8	7	6
$m_A, m_{H^{\pm}} \; [\text{GeV}]$	145, 163	144, 163	147, 165
$m_{\tilde{t}_1}, m_{\tilde{t}_2} \; [\text{GeV}]$	112, 3002	128, 3207	152, 3148
$\mu, A_t [\text{TeV}]$	4.73, -4.26	-5.00, 4.90	5.00, -5.01
$\Gamma(h, H \to VV^*)$ [SM]	0.056, 0.944	0.055, 0.945	0.077, 0.923
$\Gamma(h, H \to \tau^+ \tau^-)$ [SM]	64, 0.84	50, 0.45	37, 0.49
$\Gamma(h, H \to b\overline{b}) \text{ [SM]}$	40, 0.31	53,0.68	25, 0.21
$\Gamma(h, H \to gg) [SM]$	0.76, 0.31	0.47,0.44	0.29, 0.52
$\Gamma(h, H \to \gamma \gamma) \text{ [SM]}$	0.0093, 1.20	$0.021,\ 1.14$	0.048, 1.08

MSSM Higgs bosons can simultaneously explain LHC discovery and LEP excess of Higgs–like events!

- MSSM Higgs bosons can simultaneously explain LHC discovery and LEP excess of Higgs–like events!
- Predicts rather light Higgs spectrum ($m_{H^{\pm}} \le 170 \text{ GeV}$):
 Improved prospects for *t* → *H*⁺*b* searches!

- MSSM Higgs bosons can simultaneously explain LHC discovery and LEP excess of Higgs–like events!
- Predicts rather light Higgs spectrum ($m_{H^{\pm}} \le 170 \text{ GeV}$):
 Improved prospects for *t* → *H*⁺*b* searches!
- Can significantly enhance or suppress various signal strengths; ratio of 4ℓ and $\gamma\gamma$ signals can vary between 0.66 and 1.3.

- MSSM Higgs bosons can simultaneously explain LHC discovery and LEP excess of Higgs–like events!
- Predicts rather light Higgs spectrum ($m_{H^{\pm}} \le 170 \text{ GeV}$):
 Improved prospects for *t* → *H*⁺*b* searches!
- Can significantly enhance or suppress various signal strengths; ratio of 4ℓ and $\gamma\gamma$ signals can vary between 0.66 and 1.3.
- Needs large \tilde{t} mass splitting, $|A_t| + |\mu| > 2$ TeV: finetuning!

- MSSM Higgs bosons can simultaneously explain LHC discovery and LEP excess of Higgs–like events!
- Predicts rather light Higgs spectrum ($m_{H^{\pm}} \le 170 \text{ GeV}$):
 Improved prospects for *t* → *H*⁺*b* searches!
- Can significantly enhance or suppress various signal strengths; ratio of 4ℓ and $\gamma\gamma$ signals can vary between 0.66 and 1.3.
- Needs large \tilde{t} mass splitting, $|A_t| + |\mu| > 2$ TeV: finetuning!
- For some parts of parameter space, decisive test may need ILC; light h difficult to detect at LHC.