Learning from WIMPs

Manuel Drees

Bonn University

1 Introduction

- 1 Introduction
- 2 Learning about the early Universe

- 1 Introduction
- 2 Learning about the early Universe
- 3 Learning about our galaxy

- 1 Introduction
- 2 Learning about the early Universe
- 3 Learning about our galaxy
- 4 Summary

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

• Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.

 Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

• Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.

 Ω : Mass density in units of critical density; $\Omega=1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

Models of structure formation, X ray temperature of clusters of galaxies, . . .

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
 - Models of structure formation, X ray temperature of clusters of galaxies, . . .
- ullet Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{
 m DM}h^2=0.105^{+0.007}_{-0.013}$ spergel et al., astro-ph/0603449

 Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor—made" WIMP models

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor—made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor—made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both direct and indirect detection of WIMPs

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \bar{\chi}$, i.e. $\chi \chi \leftrightarrow SM$ particles is possible, but single production of χ is forbidden by some symmetry.

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \bar{\chi}$, i.e. $\chi \chi \leftrightarrow SM$ particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter

⟨...⟩ : Thermal averaging

 $\sigma_{\rm ann} = \sigma(\chi\chi\to {\rm SM~particles})$

v: relative velocity between χ 's in their cms

 $n_{\chi,\,\mathrm{eq}}:\chi$ density in full equilibrium

Assume χ was in full thermal equilibrium after inflation.

Assume χ was in full thermal equilibrium after inflation. Requires

$$n_{\chi}\langle\sigma_{\rm ann}v\rangle > H$$

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_{\chi}\langle\sigma_{\rm ann}v\rangle > H$$

For
$$T < m_{\chi}: n_{\chi} \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_{\chi}/T}, \ H \propto T^2$$

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_{\chi}\langle\sigma_{\rm ann}v\rangle > H$$

For
$$T < m_{\chi}: n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}, H \propto T^2$$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze—out) temperature T_F .

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_{\chi}\langle\sigma_{\rm ann}v\rangle > H$$

For
$$T < m_{\chi}: n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}, H \propto T^2$$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_{\chi}\langle\sigma_{\rm ann}v\rangle > H$$

For
$$T < m_{\chi}: n_{\chi} \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_{\chi}/T}, \ H \propto T^2$$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_\chi h^2 \propto {1 \over \langle v \sigma_{
m ann}
angle} \sim 0.1 \ {
m for} \ \sigma_{
m ann} \sim {
m pb}$$

• χ is effectively stable, $\tau_\chi \gg \tau_{\rm U}$: partly testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- ullet No entropy production after χ decoupled: Not testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- ullet At time of χ decoupling is known: partly testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- ullet At time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:

$$T_R > T_F \simeq m_\chi/20$$

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- ullet At time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$

Can we test these assumptions, if Ω_{χ} and "all" particle physics properties of χ are known?

Assume $T_0 \lesssim T_F$, $n_{\chi}(T_0) = 0$ (T_0 : Initial temperature)

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0 : Initial temperature) Introduce dimensionless variables $Y_\chi \equiv \frac{n_\chi}{s}$, $x \equiv \frac{m_\chi}{T}$ (s: entropy density).

Assume $T_0 \lesssim T_F$, $n_{\chi}(T_0) = 0$ (T_0 : Initial temperature) Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \ x \equiv \frac{m_\chi}{T}$$
 (s: entropy density).

Use non-relativistic expansion of cross section:

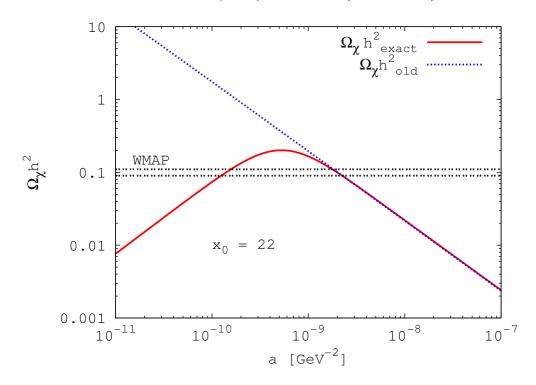
$$\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$$

Assume $T_0 \lesssim T_F$, $n_{\chi}(T_0) = 0$ (T_0 : Initial temperature) Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \ x \equiv \frac{m_\chi}{T}$$
 (s: entropy density).

Use non-relativistic expansion of cross section:

$$\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$$



Using explicit form of $H, Y_{\chi,eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f\left(a + \frac{6b}{x}\right)x^{-2}\left(Y_{\chi}^{2} - cx^{3}e^{-2x}\right).$$

$$f = 1.32 \ m_{\chi}M_{\text{Pl}}\sqrt{g_{*}}, \ c = 0.0210 \ g_{\chi}^{2}/g_{*}^{2}$$

Using explicit form of $H, Y_{\chi,eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f\left(a + \frac{6b}{x}\right)x^{-2}\left(Y_{\chi}^2 - cx^3e^{-2x}\right).$$

$$f = 1.32 \ m_{\chi} M_{\rm Pl} \sqrt{g_*}, \ c = 0.0210 \ g_{\chi}^2 / g_*^2$$

For $T_0 \ll T_F$: Annihilation term $\propto Y_\chi^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2} x_R e^{-2x_R} + \left(\frac{a}{4} + 3b \right) e^{-2x_R} \right].$$

Note: $\Omega_{\chi}h^2 \propto \sigma_{\rm ann}$ in this case!

Using explicit form of $H, Y_{\chi,eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f\left(a + \frac{6b}{x}\right)x^{-2}\left(Y_{\chi}^2 - cx^3e^{-2x}\right).$$

$$f = 1.32 \ m_{\chi} M_{\text{Pl}} \sqrt{g_*}, \ c = 0.0210 \ g_{\chi}^2 / g_*^2$$

For $T_0 \ll T_F$: Annihilation term $\propto Y_\chi^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2} x_R e^{-2x_R} + \left(\frac{a}{4} + 3b \right) e^{-2x_R} \right].$$

Note: $\Omega_{\chi}h^2\propto\sigma_{\mathrm{ann}}$ in this case!

For intermediate temperatures, $T_0 \lesssim T_F$: Define 1st–order solution $Y_1 = Y_0 + \delta$.

 $\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f\left(a + \frac{6b}{x}\right) \frac{Y_0(x)^2}{x^2}.$$

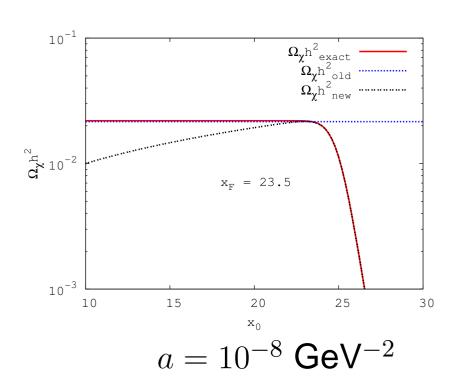
 $\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\rm ann}^3$

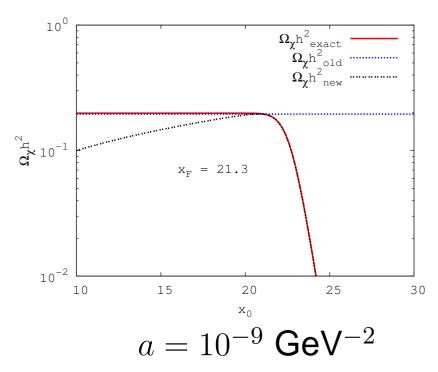
Get good results for $\Omega_{\chi}h^2$ for all $T_0 \leq T_F$ through "resummation":

$$Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0} \right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

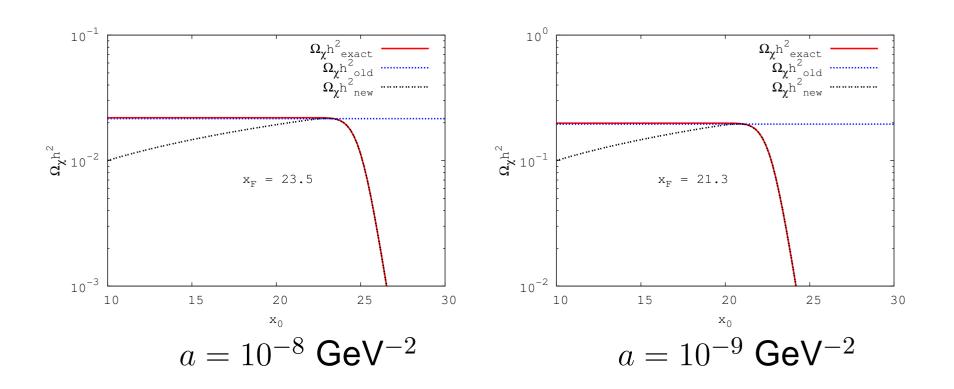
 $Y_{1,r} \propto 1/\sigma_{
m ann}$ for $|\delta| \gg Y_0$ MD, Imminniyaz, Kakizaki, hep-ph/0603165

Numerical comparison: b = 0



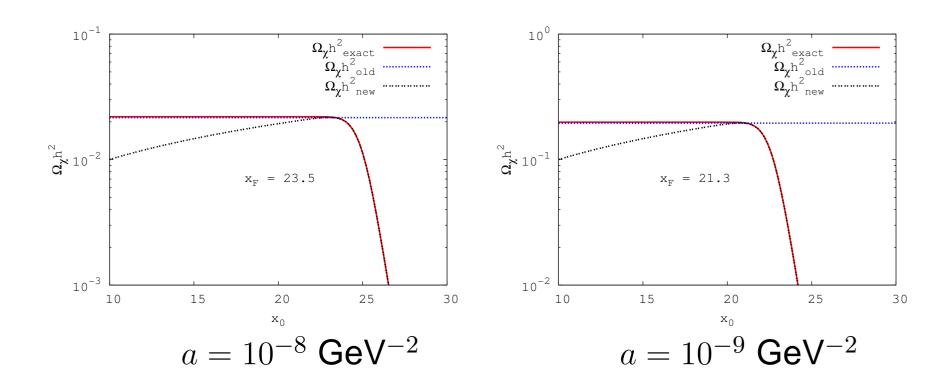


Numerical comparison: b = 0



Can extend validity of new solution to all T, including $T\gg T_0$, by using $\Omega_\chi(T_{\rm max})$ if $T_0>T_{\rm max}\simeq T_F$

Numerical comparison: b = 0



Can extend validity of new solution to all T, including $T\gg T_0$, by using $\Omega_\chi(T_{\rm max})$ if $T_0>T_{\rm max}\simeq T_F$

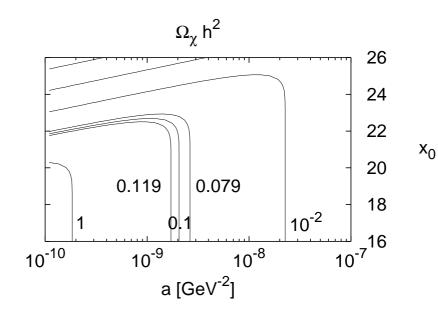
Note: $\Omega_{\chi}(T_0) \leq \Omega_{\chi}(T_0 \gg T_F)$

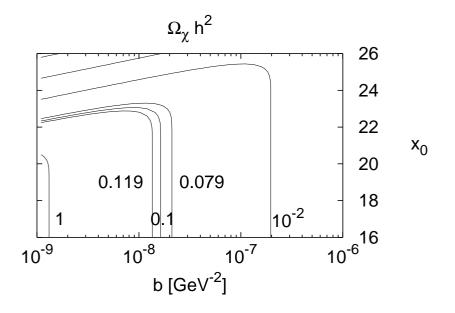
MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

If $n_{\chi}(T_0)=0$, demanding $\Omega_{\chi}h^2\simeq 0.1$ imposes lower bound on T_0 :

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

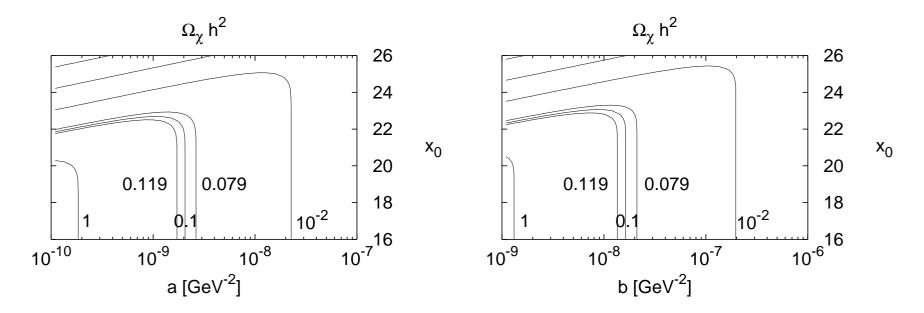
If $n_{\chi}(T_0)=0$, demanding $\Omega_{\chi}h^2\simeq 0.1$ imposes lower bound on T_0 :





MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

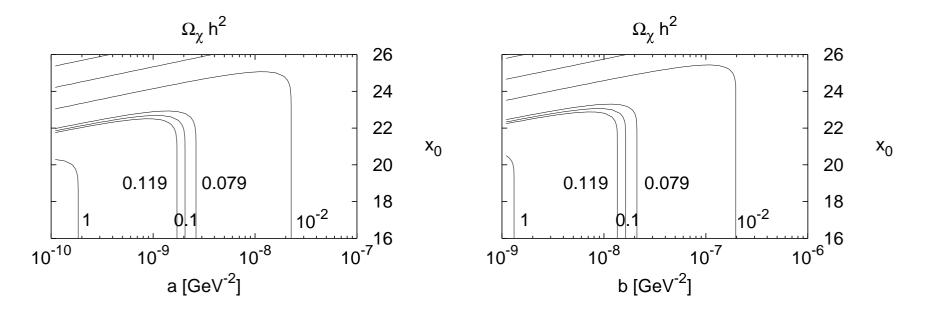
If $n_{\chi}(T_0)=0$, demanding $\Omega_{\chi}h^2\simeq 0.1$ imposes lower bound on T_0 :



$$\Longrightarrow T_0 \geq \frac{m_\chi}{23}$$
 Holds independent of $\sigma_{\rm ann}!$

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

If $n_{\chi}(T_0)=0$, demanding $\Omega_{\chi}h^2\simeq 0.1$ imposes lower bound on T_0 :



$$\Longrightarrow T_0 \geq \frac{m_\chi}{23}$$
 Holds independent of $\sigma_{\rm ann}!$

If $T_0 \simeq m_\chi/22$: Get right $\Omega_\chi h^2$ for wide range of cross sections!

Assumptions

- Assumptions
 - $\Omega_{\chi}h^2$ is known (see below)

- Assumptions
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)

Assumptions

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)

- Assumptions
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)$$
, $z = T/m_{\chi}$

- Assumptions
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)$$
, $z = T/m_{\chi}$

• Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

$$A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + (z - z_{F,st})^2 A''(z_{F,st})/2$$

- Assumptions
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)$$
, $z = T/m_{\chi}$

• Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

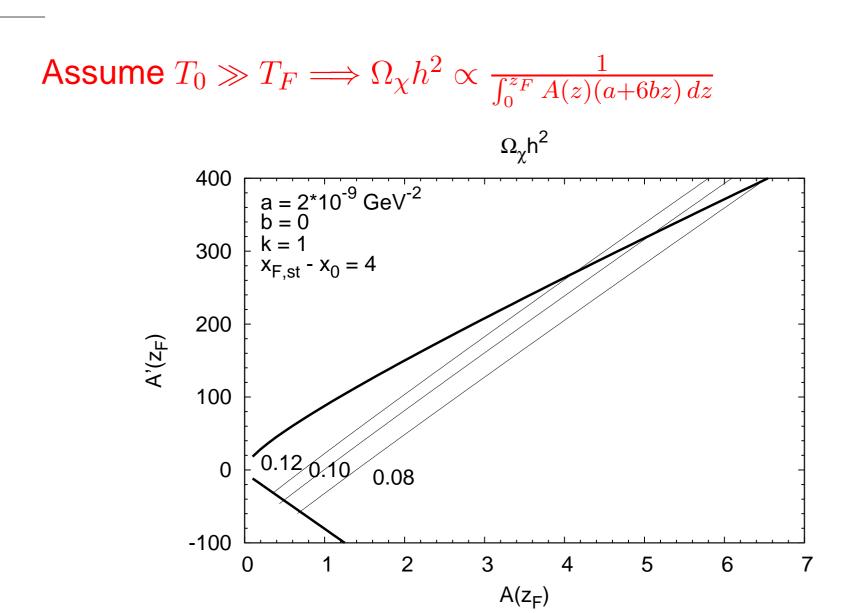
$$A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + (z - z_{F,st})^2 A''(z_{F,st})/2$$

• Successful BBN $\Longrightarrow k \equiv A(z \rightarrow 0) = 1.0 \pm 0.2$

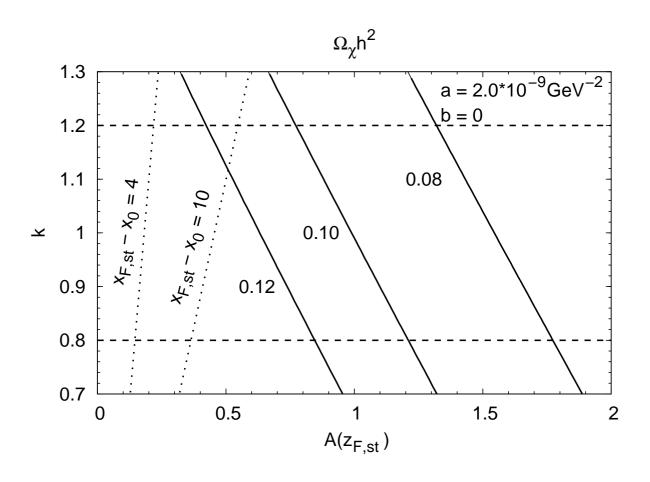
Constraining H(T) (cont.d)

Assume
$$T_0 \gg T_F \Longrightarrow \Omega_\chi h^2 \propto \frac{1}{\int_0^{z_F} A(z)(a+6bz) \, dz}$$

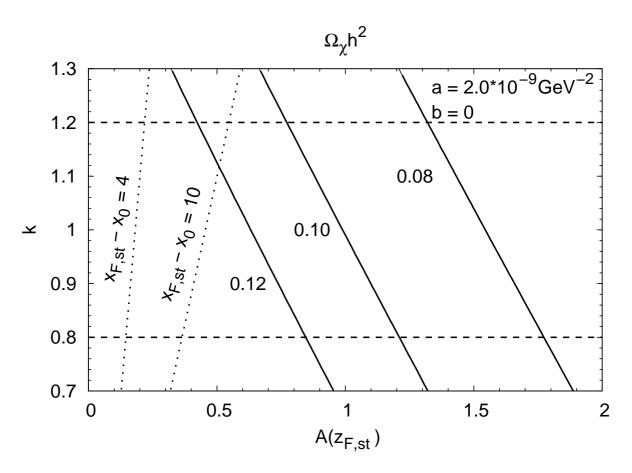
Constraining H(T) (cont.d)



The case $A''(z_{F,st}) = 0$



The case $A''(z_{F,st}) = 0$



Relative constraint on $A(z_{F,\text{st}})$ weaker than that on $\Omega_{\chi}h^2$.

WIMPs are everywhere!

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:

$$\chi + N \rightarrow \chi + N$$

Measured quantity: recoil energy of N

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:

$$\chi + N \rightarrow \chi + N$$

- Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β , γ events; neutron screening; ...

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:

$$\chi + N \rightarrow \chi + N$$

Measured quantity: recoil energy of N

- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...
- Is being pursued vigorously around the world!

Direct WIMP detection: theory

Counting rate given by

$$\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$$

Q: recoil energy

 $A = \rho \sigma_0/(2m_\chi m_r) = \text{const.: encodes particle physics}$

F(Q): nuclear form factor

v: WIMP velocity in lab frame

$$v_{\min}^2 = m_N Q/(2m_r^2)$$

 $v_{\rm esc}$: Escape velocity from galaxy

 $f_1(v)$: normalized one-dimensional WIMP velocity distribution

Direct WIMP detection: theory

Counting rate given by

$$\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$$

Q: recoil energy

 $A = \rho \sigma_0/(2m_\chi m_r) = \text{const.: encodes particle physics}$

F(Q): nuclear form factor

v: WIMP velocity in lab frame

$$v_{\min}^2 = m_N Q/(2m_r^2)$$

 $v_{\rm esc}$: Escape velocity from galaxy

 $f_1(v)$: normalized one-dimensional WIMP velocity distribution

In principle, can invert this relation to measure $f_1(v)$!

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v)dv = 1$).

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v)dv = 1$).

Need to know form factor \Longrightarrow stick to spin-independent scattering.

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v)dv = 1$).

Need to know form factor \Longrightarrow stick to spin-independent scattering.

Need to know m_{χ} , but do *not* need σ_0, ρ .

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v)dv = 1$).

Need to know form factor \Longrightarrow stick to spin-independent scattering.

Need to know m_{χ} , but do *not* need σ_0, ρ .

Need to know *slope* of recoil spectrum!

MD & C.L. Shan, astro-ph/0703651

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v)dv = 1$).

Need to know form factor \Longrightarrow stick to spin-independent scattering.

Need to know m_{χ} , but do *not* need σ_0, ρ .

Need to know slope of recoil spectrum!

dR/dQ is approximately exponential: better work with logarithmic slope

Determining the logarithmic slope of dR/dQ

■ Good local observable: Average energy transfer $\langle Q \rangle_i$ in i-th bin

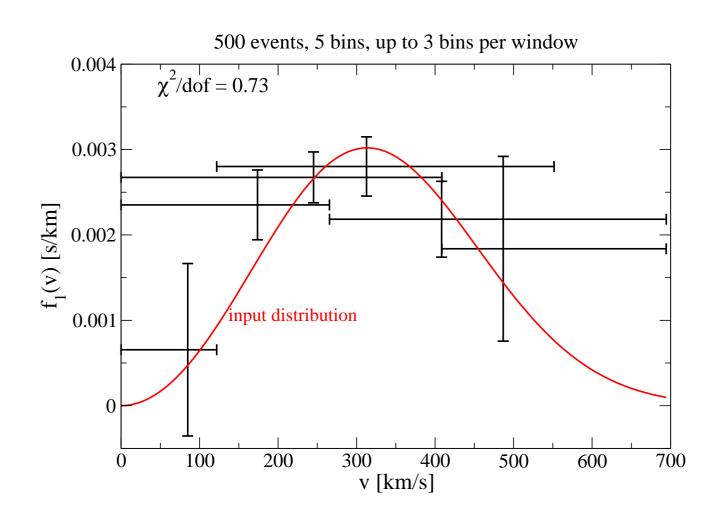
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i-th bin
- Stat. error on slope \propto (bin width)^{-1.5} \Longrightarrow need large bins

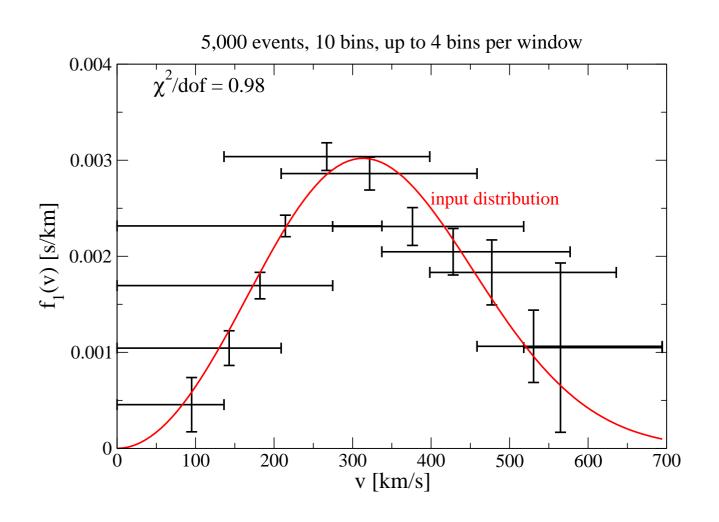
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i-th bin
- Stat. error on slope \propto (bin width)^{-1.5} \Longrightarrow need large bins
- To maximize information: use overlapping bins ("windows")

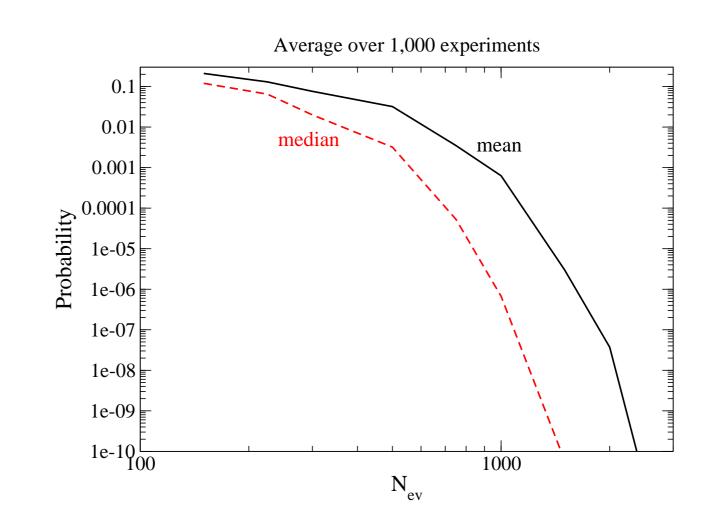
Recoil spectrum: prediction and simulated measurement



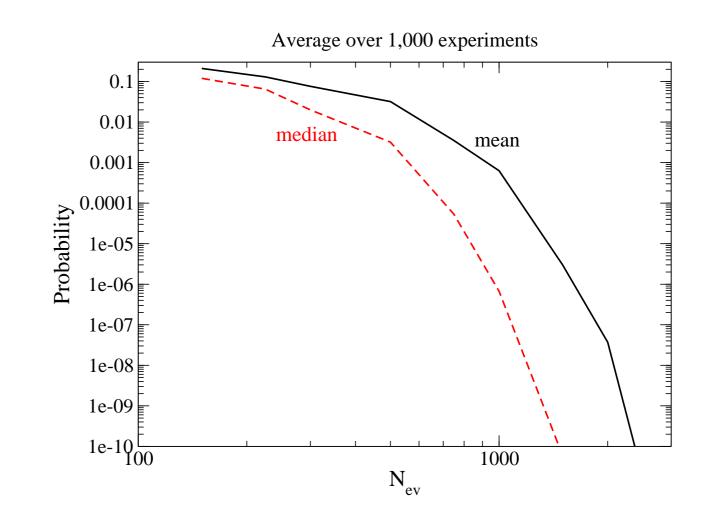
Recoil spectrum: prediction and simulated measurement



Statistical exclusion of constant f_1



Statistical exclusion of constant f_1



Need several hundred events to begin direct reconstruction!

Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold Moments are strongly correlated!

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

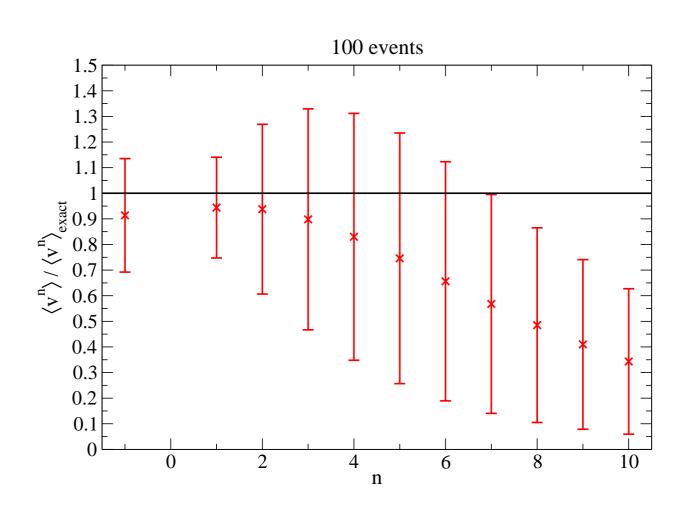
$$\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold

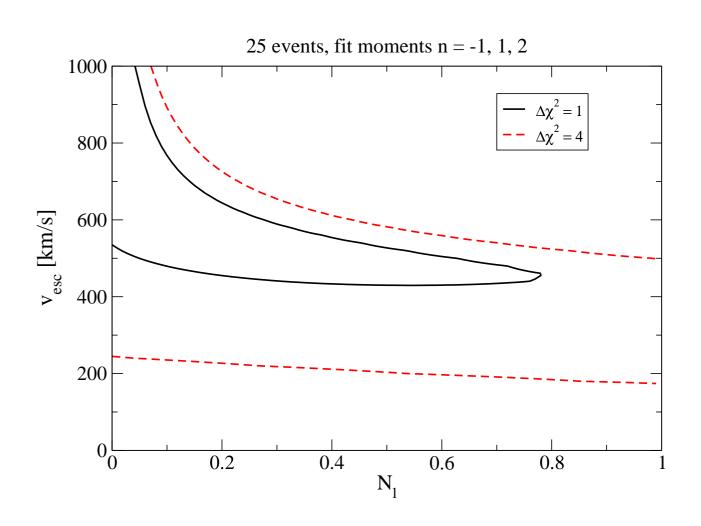
Moments are strongly correlated!

High moments, and their errors, are underestimated in "typical" experiment: get large contribution from large Q

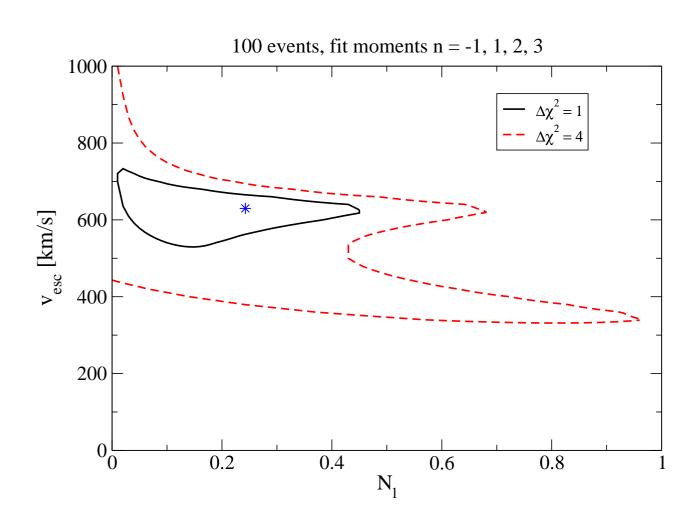
Determination of first 10 moments



Constraining a "late infall" component



Constraining a "late infall" component

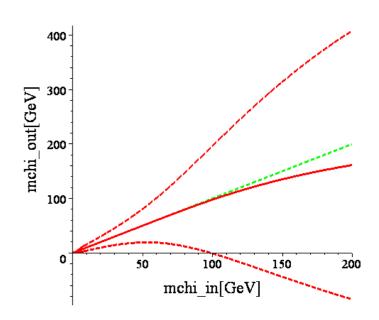


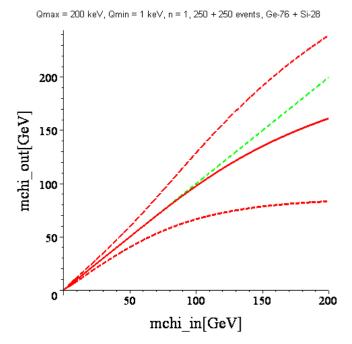
Determining the WIMP mass

MD & C.L. Shan, in progress

Can determine m_χ from requirement that different targets yield *same* moments of f_1

Qmax = 200 keV, Qmin = 1 keV, n = 1, 25 + 25 events, Ge-76 + Si-28





Learning about the Early Universe:

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_\chi h^2$

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_\chi h^2$
- Learning about our galaxy:

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_\chi h^2$
- Learning about our galaxy:
 - Direct reconstruction of $f_1(v)$ needs several hundred events

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_\chi h^2$
- Learning about our galaxy:
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non-trivial statements about moments of f_1 possible with few dozen events

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_{\chi}h^2$
- Learning about our galaxy:
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non-trivial statements about moments of f_1 possible with few dozen events
 - Needs to be done to determine ρ_{χ} : required input for learning about early Universe!

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \ge m_\chi/23 \sim 10^4 T_{\rm BBN}$
 - Error on Hubble parameter during WIMP freeze—out somewhat bigger than that on $\Omega_\chi h^2$
- Learning about our galaxy:
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non-trivial statements about moments of f_1 possible with few dozen events
 - Needs to be done to determine ρ_{χ} : required input for learning about early Universe!
- Learning about WIMPs: Can determine m_{χ} from moments of f_1 measured with two different targets.