Making and Detecting Supersymmetric Dark Matter

Manuel Drees

Bonn University

1 The need for DM

The need for DM
 Supersymmetry

- 1 The need for DM
- 2 Supersymmetry
- 3 Making Supersymmetric Dark Matter

- 1 The need for DM
- 2 Supersymmetry
- 3 Making Supersymmetric Dark Matter
- 4 Detecting Supersymmetric Dark Matter

- 1 The need for DM
- 2 Supersymmetry
- 3 Making Supersymmetric Dark Matter
- 4 Detecting Supersymmetric Dark Matter
- 5 Summary

A typical spiral galaxy

Rotation curve

- Spiral galaxies rotate
- For object on stable circular orbit:

centripetal force = gravitational force $\frac{v^2}{R} = G_N \frac{M(R)}{R^2}$

M(R): Mass w/in orbit

- ▶ For large R: $M(R) \longrightarrow const.$, i.e. expect $v(R) \propto 1/\sqrt{R}$
- Observe: $v(R) \simeq const.$
- $\implies M(R) \propto R$: Invisible, "Dark" Matter forms halo around visible galaxy

True picture of a galaxy

A typical galaxy cluster

Dark matter in clusters of galaxies

• Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!

Dark matter in clusters of galaxies

- Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!
- Similar argument holds for single atoms: Temperature of gas in cluster $\propto M_{cluster}!$ Gives consistent result.

Dark matter in clusters of galaxies

- Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!
- Similar argument holds for single atoms: Temperature of gas in cluster $\propto M_{cluster}!$ Gives consistent result.
- "Gravitational lensing": Mass deflects light, by angle \propto mass: Most direct way to measure $M_{\text{cluster}} \ge 10 \times M_{\text{visible}}!$

Same cluster in *X***-ray light**

Example of gravitational lensing

Cosmic Microwave Background (CMB) (CMB) –

- Prediction: Gamov 1950; Discovery: Penzias und Wilson 1964
- Mean temperature: 2.7 K (= -270° C)
- Temperature variation: $\delta T \simeq 10^{-4} \text{ K}$
- From angular distribution and size of these variations: can determine cosmological parameters!

The Microwave Sky

• Total mass $\simeq 7 \times$ mass of "ordinary" (baryonic) matter

- Total mass $\simeq 7 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 3 \times$ mass density

- Total mass $\simeq 7 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 3 \times$ mass density
- About 2/3 of total mass/energy density in form of "Dark Energy"! Confirmed by observations of distant supernovae. Expansion of Universe is accelarating: Dark Energy has "negative pressure"!

- Total mass $\simeq 7 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 3 \times$ mass density
- About 2/3 of total mass/energy density in form of "Dark Energy"! Confirmed by observations of distant supernovae. Expansion of Universe is accelarating: Dark Energy has "negative pressure"!
- Universal Dark Matter density: $\Omega_{\rm DM}h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Composition of the Universe

25% non-baryonic DM

In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)

In this room

1 ℓ contains:

- Ca. 1 g baryonic matter (air)
- Ca. 10^{-20} g Dark Matter (DM)

In this room

1 ℓ contains:

- Ca. 1 g baryonic matter (air)
- Ca. 10^{-20} g Dark Matter (DM)
- **Solution** Ca. 10^{-25} g–equivalent Dark Energy (DE)

Total baryon density is determined by:

Big Bang Nucleosynthesis

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need ~ 20% of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and has (strongly) suppressed coupling to elm radiation
Remarks

Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!

Remarks

- Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!
- Evidence for $\Omega_{DM} \gtrsim 0.2$ much more robust than that! (Does, however, assume standard law of gravitation.)

Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

Too many sub-halos are predicted: Might well be "dark dwarves" (w/o baryons; perhaps blown out by first supernovae)

Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

- Too many sub-halos are predicted: Might well be "dark dwarves" (w/o baryons; perhaps blown out by first supernovae)
- Simulations seem to over-predict DM density near centers of galaxies ("cusp problem"). Warning: many things going on in these regions!

Observation of merging cluster 1E0657-56 ("bullet cluster"):

Using X-rays (CHANDRA): observes hot (baryonic) gas

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter Resulting bound on DM–DM scattering cross section constrains models of interacting DM! Markevitch et al.,

astro-ph/0309303

Bullet cluster

Basic ingredients:

Matter particles: Spin–1/2 fermions (quarks and leptons)

- Matter particles: Spin–1/2 fermions (quarks and leptons)
- Interactions determined by demanding invariance of *L* under SU(3) × SU(2) × U(1)_Y transformations ⇒

- Matter particles: Spin–1/2 fermions (quarks and leptons)
- Interactions determined by demanding invariance of *L* under SU(3) × SU(2) × U(1)_Y transformations ⇒
- Force carriers: Spin–1 bosons (gluons, photon, W^{\pm}, Z^{0})

- Matter particles: Spin–1/2 fermions (quarks and leptons)
- Interactions determined by demanding invariance of *L* under SU(3) × SU(2) × U(1)_Y transformations ⇒
- Force carriers: Spin–1 bosons (gluons, photon, W^{\pm}, Z^{0})
- $SU(2) \times U(1)$ invariance forbids all particle masses \implies

- Matter particles: Spin–1/2 fermions (quarks and leptons)
- Interactions determined by demanding invariance of *L* under SU(3) × SU(2) × U(1)_Y transformations ⇒
- Force carriers: Spin–1 bosons (gluons, photon, W^{\pm}, Z^{0})
- $SU(2) \times U(1)$ invariance forbids all particle masses \implies
- Need Higgs mechanism for spontaneous symmetry breaking; requires elementary spin–0 Higgs boson(s)

The naturalness/hierarchy problem

Standard Problem of Standard Model of particle physics: corrections to Higgs boson mass diverge quadratically!

$$\delta m_{\phi,t}^2 = \frac{3f_t^2}{8\pi^2} \Lambda^2 + \mathcal{O}(\Lambda/m_\phi)$$

 Λ : cut–off for momentum in loop.

The naturalness/hierarchy problem

Standard Problem of Standard Model of particle physics: corrections to Higgs boson mass diverge quadratically!

$$\delta m_{\phi,t}^2 = \frac{3f_t^2}{8\pi^2} \Lambda^2 + \mathcal{O}(\Lambda/m_\phi)$$

 Λ : cut–off for momentum in loop.

 m_{ϕ} Likes to be at *highest* relevant mass scale, e.g. $M_{\rm GUT} \sim 10^{16}$ GeV, $M_{\rm Planck} \sim 10^{18}$ GeV!

The naturalness/hierarchy problem

Standard Problem of Standard Model of particle physics: corrections to Higgs boson mass diverge quadratically!

$$\delta m_{\phi,t}^2 = \frac{3f_t^2}{8\pi^2} \Lambda^2 + \mathcal{O}(\Lambda/m_\phi)$$

 Λ : cut–off for momentum in loop.

 m_{ϕ} Likes to be at *highest* relevant mass scale, e.g. $M_{\rm GUT} \sim 10^{16}$ GeV, $M_{\rm Planck} \sim 10^{18}$ GeV!

If $m_{\phi,\text{phys.}}^2 = m_{\phi,0}^2 + \delta m_{\phi}^2 = \simeq (100 \text{ GeV})^2$: Need to finetune $m_{\phi,0}^2$ to 1 part in 10^{30} !

Nature abhors finetuning

Quantum corrections to gauge or Yukawa couplings at worst diverge logarithmically: not so bad even for $\Lambda = M_{\rm Planck}$.

Nature abhors finetuning

- Quantum corrections to gauge or Yukawa couplings at worst diverge logarithmically: not so bad even for $\Lambda = M_{\rm Planck}$.
- Standard cosmology has "flatness problem":

 $\Omega_{\rm BBN} - 1 \simeq 10^{-16} \left(\Omega_{\rm now} - 1 \right)$

Here: $\Omega = \rho/\rho_{crit}$; $\Omega = 1$ means flat Universe. Is solved by inflation, which predicts:

- $\Omega_{\rm now} \simeq 1$
- Approximately scale invariant spectrum of density perturbations

Both predictions were confirmed by WMAP!

Postulate symmetry between bosons and fermions: boson \rightarrow fermion, fermion \rightarrow boson This is called a supersymmetry to distinguish it from the usual (gauge) symmetries.

Postulate symmetry between bosons and fermions: boson \rightarrow fermion, fermion \rightarrow boson This is called a supersymmetry to distinguish it from the usual (gauge) symmetries.

Requires doubling of particle spectrum: each known particle gets superpartner!

Postulate symmetry between bosons and fermions: boson \rightarrow fermion, fermion \rightarrow boson This is called a supersymmetry to distinguish it from the usual (gauge) symmetries.

Requires doubling of particle spectrum: each known particle gets superpartner!

In particular: higgsino \tilde{h} is superpartner of Higgs boson ϕ .

Postulate symmetry between bosons and fermions: boson \rightarrow fermion, fermion \rightarrow boson This is called a supersymmetry to distinguish it from the usual (gauge) symmetries.

Requires doubling of particle spectrum: each known particle gets superpartner!

In particular: higgsino \tilde{h} is superpartner of Higgs boson ϕ .

Quantum corrections:

 $\delta m_{\phi} \mathop{=}\limits_{\rm SUSY} \delta m_{\tilde{h}} \propto \ln \frac{\Lambda}{m_{\phi}}$ No quadratic divergencies!

Diagrammatically: each chirality state of *t* quark has scalar superpartner \tilde{t}_L , \tilde{t}_R : get new corrections:

Diagrammatically: each chirality state of t quark has scalar superpartner \tilde{t}_L , \tilde{t}_R : get new corrections:

$$\delta m_{\phi,\tilde{t}}^2 = -\frac{3f_t^2}{8\pi^2}\Lambda^2 + \dots = -\delta m_{\phi,t}^2 + \mathcal{O}\left(\left[m_t^2 - m_{\tilde{t}}^2\right]\ln\frac{\Lambda}{m_t}\right)$$

Quadratic divergencies cancel exactly!

- Local supersymmetry invariance implies invariance under coordinate trafos, i.e. GR: local SUSY \equiv SUGRA

- Local supersymmetry invariance implies invariance under coordinate trafos, i.e. GR: local SUSY \equiv SUGRA
- New particles *automatically* lead to unification of gauge couplings at scale $M_{\rm GUT} \simeq 2 \cdot 10^{16}$ GeV.

- Local supersymmetry invariance implies invariance under coordinate trafos, i.e. GR: local SUSY \equiv SUGRA
- New particles *automatically* lead to unification of gauge couplings at scale $M_{\rm GUT} \simeq 2 \cdot 10^{16}$ GeV.
- Automatically contains good Dark Matter candidate (see below).

Interactions of superparticles

Interactions of superparticles

Note: Even number of superpartners at each vertex \Rightarrow the lightest superparticle (LSP) is stable!

Breaking supersymmetry

Exact SUSY predicts $m_{\text{particle}} = m_{\text{sparticle}} \Rightarrow \text{SUSY must be}$ broken!

Breaking supersymmetry

Exact SUSY predicts $m_{\text{particle}} = m_{\text{sparticle}} \Rightarrow \text{SUSY must be broken!}$

Two basic approaches:

Postulate simple form of supersymmetry breaking at some high energy scale: Good for global analyses

Breaking supersymmetry

Exact SUSY predicts $m_{\text{particle}} = m_{\text{sparticle}} \Rightarrow \text{SUSY must be broken!}$

Two basic approaches:

- Postulate simple form of supersymmetry breaking at some high energy scale: Good for global analyses
- Allow general values for parameters relevant for specific process: Good for dedicated phenomenological analyses

Supersymmetric Dark Matter

LSP $\tilde{\chi}_1^0$ has all properties of good DM candidate:

Supersymmetric Dark Matter

LSP $\tilde{\chi}_1^0$ has all properties of good DM candidate:

It is neutral, hence dark (and evades constraints on exotic isotopes)
Supersymmetric Dark Matter

LSP $\tilde{\chi}_1^0$ has all properties of good DM candidate:

- It is neutral, hence dark (and evades constraints on exotic isotopes)
- It is stable (in simple SUSY models, with conserved R parity)

Supersymmetric Dark Matter

LSP $\tilde{\chi}_1^0$ has all properties of good DM candidate:

- It is neutral, hence dark (and evades constraints on exotic isotopes)
- It is stable (in simple SUSY models, with conserved R parity)
- It has the right (thermal) relic density for some range of model parameters

Supersymmetric Dark Matter

LSP $\tilde{\chi}_1^0$ has all properties of good DM candidate:

- It is neutral, hence dark (and evades constraints on exotic isotopes)
- It is stable (in simple SUSY models, with conserved R parity)
- It has the right (thermal) relic density for some range of model parameters

Note: DM is free bonus of Supersymmetry!

Dark Matter production

Let $\tilde{\chi}$ be the LSP, $n_{\tilde{\chi}}$ its number density (unit: GeV³).

Dark Matter production

Let $\tilde{\chi}$ be the LSP, $n_{\tilde{\chi}}$ its number density (unit: GeV³). Evolution of $n_{\tilde{\chi}}$ determined by Boltzmann equation:

$$\frac{dn_{\tilde{\chi}}}{dt} + 3Hn_{\tilde{\chi}} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\tilde{\chi}}^2 - n_{\tilde{\chi}, \, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{ann} = \sigma(\tilde{\chi}\tilde{\chi} \to SM \text{ particles})$ v: relative velocity between $\tilde{\chi}$'s in their cms $n_{\tilde{\chi}, eq} : \tilde{\chi}$ density in full equilibrium

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation.

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation.

Requires

 $n_{\tilde{\chi}} \langle \sigma_{\rm ann} v \rangle > H$

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation. Requires

 $n_{\tilde{\chi}}\langle \sigma_{\rm ann}v\rangle > H$

For $T < m_{\tilde{\chi}} : n_{\tilde{\chi}} \simeq n_{\tilde{\chi}, eq} \propto T^{3/2} e^{-m_{\tilde{\chi}}/T}, \ H \propto T^2$

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation. Requires

 $n_{\tilde{\chi}} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\tilde{\chi}} : n_{\tilde{\chi}} \simeq n_{\tilde{\chi}, eq} \propto T^{3/2} e^{-m_{\tilde{\chi}}/T}, \ H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation. Requires

 $n_{\tilde{\chi}}\langle\sigma_{\rm ann}v\rangle > H$

For $T < m_{\tilde{\chi}} : n_{\tilde{\chi}} \simeq n_{\tilde{\chi}, eq} \propto T^{3/2} e^{-m_{\tilde{\chi}}/T}, \ H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: LSP production negligible, only annihilation relevant in Boltzmann equation.

Assume $\tilde{\chi}$ was in full thermal equilibrium after inflation. Requires

 $n_{\tilde{\chi}}\langle\sigma_{\rm ann}v\rangle > H$

For $T < m_{\tilde{\chi}} : n_{\tilde{\chi}} \simeq n_{\tilde{\chi}, eq} \propto T^{3/2} e^{-m_{\tilde{\chi}}/T}, \ H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: LSP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_{\tilde{\chi}} h^2 \propto \frac{1}{\langle v \sigma_{\rm ann} \rangle} \sim 0.1 \text{ for } \sigma_{\rm ann} \sim \mathsf{pb}$$

Application: Constraining SUSY Parameter Space

Here: for mSUGRA \equiv CMSSM: define spectrum through: m_0 : Common scalar mass at GUT scale; $m_{1/2}$: Common gaugino mass at GUT scale; A_0 : Common tri–linear scalar interaction at GUT scale; $\tan \beta$: Ratio of Higgs vevs; sign μ .

Advantages of mSUGRA:

• FCNC small (but $b \rightarrow s\gamma$, $B_s \rightarrow \mu^+ \mu^-$ do constrain parameter space)

Application: Constraining SUSY Parameter Space

Here: for mSUGRA \equiv CMSSM: define spectrum through: m_0 : Common scalar mass at GUT scale; $m_{1/2}$: Common gaugino mass at GUT scale; A_0 : Common tri–linear scalar interaction at GUT scale; $\tan \beta$: Ratio of Higgs vevs; sign μ .

Advantages of mSUGRA:

- FCNC small (but $b → s\gamma$, $B_s → \mu^+ \mu^-$ do constrain parameter space)
- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive

Application: Constraining SUSY Parameter Space

Here: for mSUGRA \equiv CMSSM: define spectrum through: m_0 : Common scalar mass at GUT scale; $m_{1/2}$: Common gaugino mass at GUT scale; A_0 : Common tri–linear scalar interaction at GUT scale; $\tan \beta$: Ratio of Higgs vevs; sign μ .

Advantages of mSUGRA:

- FCNC small (but $b → s\gamma$, $B_s → \mu^+ \mu^-$ do constrain parameter space)
- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive
- Over much of parameter space, $\tilde{\chi}_1^0$ is stable LSP!

Example: $m_t = 172.7$ GeV, $\tan \beta = 10, A_0 = 0, \mu > 0$

Is the apparently small size of the allowed parameter parameter space a problem? Not necessarily ...

QED parameter space

Mass Bounds

More meaningful than "size of allowed parameter space" mSUGRA, all parameters scanned over allowed region

particle	minimal mass [GeV]			min, max mass	
	basic	incl. $b \rightarrow s\gamma$	incl. DM	aggr. a_{μ}	incl. DM
$ ilde{\chi}^0_1$	52	52	53	53, 359	55, 357
$\tilde{\chi}_1^{\pm}$	105	105	105	105, 674	105, 667
$ ilde{\chi}^0_3$	135	135	135	135, 996	292, 991
$ ilde{ au}_1$	99	99	99	99, 1020	99, 915
h	91	91	91	91, 124	91, 124
H^{\pm}	128	128	128	128, 979	128, 960
\tilde{g}	359	380	380	399, 1880	412, 1870
$ ilde{d}_R$	406	498	498	498, 1740	498, 1740
$ ilde{t}_1$	102	104	104	231, 1440	244, 1440

Dark Matter – p. 36/44

Found semi-analytic solution of Boltzmann eq. for low post-inflationary reheat temperature, $T_R \lesssim T_F$. MD, Imminniyaz, Kakizaki, hep-ph/0603165

Found semi-analytic solution of Boltzmann eq. for low post-inflationary reheat temperature, $T_R \lesssim T_F$. MD, Imminniyaz, Kakizaki, hep-ph/0603165

Assuming purely thermal LSP production: ($x_0 = m_{\tilde{\chi}}/T_R$)

Found semi-analytic solution of Boltzmann eq. for low post-inflationary reheat temperature, $T_R \lesssim T_F$. MD, Imminniyaz, Kakizaki, hep-ph/0603165

Assuming purely thermal LSP production: ($x_0 = m_{\tilde{\chi}}/T_R$)

Found semi-analytic solution of Boltzmann eq. for low post-inflationary reheat temperature, $T_R \lesssim T_F$. MD, Imminniyaz, Kakizaki, hep-ph/0603165

Assuming purely thermal LSP production: ($x_0 = m_{\tilde{\chi}}/T_R$)

LSPs are everywhere!

- LSPs are everywhere!
- In regions with increased LSP density: LSPs can annihilate into SM particles even today:

- LSPs are everywhere!
- In regions with increased LSP density: LSPs can annihilate into SM particles even today:
 - In halo of galaxies

- LSPs are everywhere!
- In regions with increased LSP density: LSPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies

- LSPs are everywhere!
- In regions with increased LSP density: LSPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies
 - Inside the Sun or Earth

Slow \bar{p} , fast e^+ : background? Propagation?

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \overline{d} : Propagation?
- Photons: Background?

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

At any given time, several claimed signals, but none is very reliable.

LSPs are everywhere!

- LSPs are everywhere!
- Can elastically scatter on nucleus in detector: $\tilde{\chi} + N \rightarrow \tilde{\chi} + N$ Measured quantity: recoil energy of N

- LSPs are everywhere!
- Can elastically scatter on nucleus in detector: $\tilde{\chi} + N \rightarrow \tilde{\chi} + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...

- LSPs are everywhere!
- Can elastically scatter on nucleus in detector: $\tilde{\chi} + N \rightarrow \tilde{\chi} + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...
- Is being pursued vigorously around the world!

Direct WIMP detection: theory

Counting rate given by $\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{esc}} \frac{f_1(v)}{v} dv$ Q: recoil energy $A = \rho \sigma_0 / (2m_{\chi}m_r) = \text{const.}$ F(Q): nuclear form factor v: WIMP velocity in lab frame $v_{\min}^2 = m_N Q / (2m_r^2)$ $v_{\rm esc}$: Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution
Direct WIMP detection: theory

Counting rate given by $\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$ Q: recoil energy $A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.}$ F(Q): nuclear form factor v: WIMP velocity in lab frame $v_{\min}^2 = m_N Q / (2m_r^2)$ $v_{\rm esc}$: Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution

In principle, can invert this relation to measure $f_1(v)$!

Recoil spectrum: prediction and simulated measurement MD, Shan, in progress

$f_1(v)$: prediction and simulated measurement

Dark Matter - p. 43/44

$f_1(v)$: prediction and simulated measurement

A few moments of $f_1(v)$ may be measurable with relatively few events

$f_1(v)$: prediction and simulated measurement

A few moments of $f_1(v)$ may be measurable with relatively few events Once $f_1(v)$ and $\sigma(\tilde{\chi}N \to \tilde{\chi}N)$ are known: Can measure local $\rho_{\tilde{\chi}}$.

 Compelling astrophysical evidence for exotic Dark Matter

- Compelling astrophysical evidence for exotic Dark Matter
- Neutralinos in mSUGRA remain well motivated, viable candidate

- Compelling astrophysical evidence for exotic Dark Matter
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Thermal production of DM particles remains most attractive mechanism: least dependent on details of cosmology

- Compelling astrophysical evidence for exotic Dark Matter
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Thermal production of DM particles remains most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal LSPs: lower bound on T_R increases by factor $\sim 10^4$

- Compelling astrophysical evidence for exotic Dark Matter
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Thermal production of DM particles remains most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal LSPs: lower bound on T_R increases by factor $\sim 10^4$
- LSP Dark Matter can be detected in a variety of ways; once detected, allows new probes of Universe