Cosmology at the LHC?

Manuel Drees

Bonn University

1 Does the LHC recreate conditions of the Early Universe?

1 Does the LHC recreate conditions of the Early Universe?

- 1 Does the LHC recreate conditions of the Early Universe?
- 2 Dark Energy and the LHC
- 3 Dark Matter and the LHC

- 1 Does the LHC recreate conditions of the Early Universe?
- 2 Dark Energy and the LHC
- 3 Dark Matter and the LHC
- 4 Summary

The early Universe:

The early Universe:

• Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$

- The early Universe:
 - Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$
 - Between reheating (after inflation) and decoupling of CMB: dominated by radiation, $\rho = \frac{\pi^2}{30}g_*T^4$

- The early Universe:
 - Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$
 - Between reheating (after inflation) and decoupling of CMB: dominated by radiation, $\rho = \frac{\pi^2}{30}g_*T^4$
 - Was mostly in thermal equilibrium: $sR^3 = \text{const.}$ $\Rightarrow \frac{\dot{T}}{T} = -H \sim 5 \cdot 10^{-19} T \ (T \sim 500 \text{ MeV})$

- The early Universe:
 - Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$
 - Between reheating (after inflation) and decoupling of CMB: dominated by radiation, $\rho = \frac{\pi^2}{30}g_*T^4$
 - Was mostly in thermal equilibrium: $sR^3 = \text{const.}$ $\Rightarrow \frac{\dot{T}}{T} = -H \sim 5 \cdot 10^{-19} T \text{ (}T \sim 500 \text{ MeV)}$
- Heavy ion collisions at the LHC:

- The early Universe:
 - Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$
 - Between reheating (after inflation) and decoupling of CMB: dominated by radiation, $\rho = \frac{\pi^2}{30}g_*T^4$
 - Was mostly in thermal equilibrium: $sR^3 = \text{const.}$ $\Rightarrow \frac{\dot{T}}{T} = -H \sim 5 \cdot 10^{-19} T \ (T \sim 500 \text{ MeV})$
- Heavy ion collisions at the LHC:
 - Fireball expands with roughly speed of light

- The early Universe:
 - Expanded, described by $H = \frac{\dot{R}}{R} = \frac{\sqrt{\rho/3}}{M_P}$
 - Between reheating (after inflation) and decoupling of CMB: dominated by radiation, $\rho = \frac{\pi^2}{30}g_*T^4$
 - Was mostly in thermal equilibrium: $sR^3 = \text{const.}$ $\Rightarrow \frac{\dot{T}}{T} = -H \sim 5 \cdot 10^{-19} T \ (T \sim 500 \text{ MeV})$
- Heavy ion collisions at the LHC:
 - Fireball expands with roughly speed of light
 - Total energy $\sim \rho R^3 = \text{const.} \Longrightarrow \frac{\dot{T}}{T} \sim -\frac{3}{4} \frac{c}{R} \sim 0.015T$ $\sim 3 \cdot 10^{16} \left. \frac{\dot{T}}{T} \right|_{\text{early Universe}} (T_{\text{initial}} = 500 \text{ MeV})$

The early Universe:

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T\gtrsim 0.3$ eV (until CMB decoupling)

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T \gtrsim 0.3$ eV (until CMB decoupling)
- Heavy ion collisions at the LHC:

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T\gtrsim 0.3$ eV (until CMB decoupling)
- Heavy ion collisions at the LHC:
 - Weak interactions never reach equilibrium

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T\gtrsim 0.3$ eV (until CMB decoupling)
- Heavy ion collisions at the LHC:
 - Weak interactions never reach equilibrium
 - Electromagnetic interactions never reach equilibrium

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T \gtrsim 0.3$ eV (until CMB decoupling)
- Heavy ion collisions at the LHC:
 - Weak interactions never reach equilibrium
 - Electromagnetic interactions never reach equilibrium
 - Not clear which strong interactions are in equilibrium for what period of time

- The early Universe:
 - Weak interactions were in equilibrium for $T \gtrsim 1 \text{ MeV}$
 - Electromagnetic interactions (between photons and electrons) were in equilibrium for $T\gtrsim 0.3$ eV (until CMB decoupling)
- Heavy ion collisions at the LHC:
 - Weak interactions never reach equilibrium
 - Electromagnetic interactions never reach equilibrium
 - Not clear which strong interactions are in equilibrium for what period of time

LHC will *not* recreate conditions of the early Universe!

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

This is *not true*, either.

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

This is *not true*, either.

Example: Higgs production, $\sigma \simeq 10$ pb (at LHC)

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

This is *not true*, either.

Example: Higgs production, $\sigma \simeq 10$ pb (at LHC)

• Cosmic Ray flux on earth: $\frac{d\Phi}{dE} \sim \frac{10^{-18}}{\text{m}^2 \text{sr s GeV}} \left(\frac{E}{10^8 \text{ GeV}}\right)^{-3}$

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

This is *not true*, either.

Example: Higgs production, $\sigma \simeq 10$ pb (at LHC)

- Cosmic Ray flux on earth: $\frac{d\Phi}{dE} \sim \frac{10^{-18}}{\text{m}^2 \text{sr s GeV}} \left(\frac{E}{10^8 \text{ GeV}}\right)^{-3}$
- Implies $\sim 2.5 \cdot 10^{13} \ pp$ collisions with $\sqrt{s} > \sqrt{s}_{\rm LHC}$ from CR events per year on Earth

Often said: "LHC will create massive, short–lived particles for the first time since the Big Bang".

This is *not true*, either.

Example: Higgs production, $\sigma \simeq 10$ pb (at LHC)

- Cosmic Ray flux on earth: $\frac{d\Phi}{dE} \sim \frac{10^{-18}}{\text{m}^2 \text{sr s GeV}} \left(\frac{E}{10^8 \text{ GeV}}\right)^{-3}$
- Implies $\sim 2.5 \cdot 10^{13} \ pp$ collisions with $\sqrt{s} > \sqrt{s}_{\rm LHC}$ from CR events per year on Earth
- Implies $\sim 10^4$ Higgs bosons are produced per year in CR events on Earth

True Statements

 LHC will (hopefully) be humanity's first chance to <u>analyze</u> (many) new particles

True Statements

- LHC will (hopefully) be humanity's first chance to <u>analyze</u> (many) new particles
- Some of these particles may well be of relevance for cosmology

True Statements

- LHC will (hopefully) be humanity's first chance to <u>analyze</u> (many) new particles
- Some of these particles may well be of relevance for cosmology
- LHC discoveries may well be of interest to cosmologists!

Biggest puzzles in particle cosmology

Composition of the Universe

Biggest puzzles in particle cosmology

Composition of the Universe

What is all the dark stuff?

Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics
- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: <u>No</u> connection to collider physics
- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)
- In models with large extra dimension: LHC may be black hole factory; "cosmon" should be produced in bh decay

Challenges

Only have semi-classical treatment: supposed to work for $M \gg M_D$
Challenges

- Only have semi-classical treatment: supposed to work for $M \gg M_D$
- Partonic cross section $\propto M^{1/(1+n)}$, but pp cross section falls with increasing M:

Challenges

- Only have semi–classical treatment: supposed to work for $M \gg M_D$
- Partonic cross section $\propto M^{1/(1+n)}$, but pp cross section falls with increasing M:

Hence: Neither understand final stage of bh decay, nor total bh production cross section!

On the other hand ...

Finding superparticles makes understanding small cosmological constant 10^{60} times easier!

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
 - Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
 - Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f) \langle v\sigma(\chi\chi \to \mathrm{any}) \rangle = H(T_f)$$

 n_{χ} : χ number density $\propto {
m e}^{-m_{\chi}/T}$

v: Relative velocity

 $\langle \dots \rangle$: Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f) \langle v\sigma(\chi\chi \to \mathrm{any}) \rangle = H(T_f)$$

 n_{χ} : χ number density $\propto e^{-m_{\chi}/T}$ v: Relative velocity $\langle \dots \rangle$: Thermal average H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$

Gives average relic mass density

$$\Omega_{\chi} \propto \frac{1}{\langle v\sigma(\chi\chi \to \mathrm{any}) \rangle}$$

Yields roughly right result for weak cross section!

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- Temperature (after inflation) was high enough for χ to have reached thermal equilibrium: Not testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- Temperature (after inflation) was high enough for χ to have reached thermal equilibrium: Not testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

- y is effectively stable, $\tau_{\chi} \gg \tau_{U}$: partly testable at colliders
- Temperature (after inflation) was high enough for χ to have reached thermal equilibrium: Not testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders

• Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with "Überbau" of heavier, strongly interacting new particles decaying into \u03c0 \u03c0

- Only $\langle v\sigma(\chi\chi \to \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with "Überbau" of heavier, strongly interacting new particles decaying into \u03c0
- Such particles exist for best-motivated χ candidates: SUSY, Little Higgs, (universal extra dimension)

Conditions for successful DM candidate:

Must be stable $\Rightarrow \chi = LSP$ and *R*-parity is conserved (if LSP in visible sector)

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is ...

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = LSP$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is ...

$$\chi = \tilde{\chi}_1^0$$

(or in hidden sector)

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP! Neutralino mass matrix in the MSSM:

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP! Neutralino mass matrix in the MSSM:

 \implies Can determine decomposition of $\tilde{\chi}_1^0$ by studying $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_3^0$:

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

 $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow \text{SM particles})$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP! Neutralino mass matrix in the MSSM:

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

 \implies Can determine decomposition of $\tilde{\chi}_1^0$ by studying $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$: Are produced both directly and in \tilde{q} , \tilde{g} decays at the LHC!

• $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V \phi, \phi \phi$ (V: Massive gauge boson; ϕ : Higgs boson).

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 → f\bar{f}, VV, V\phi, \phi\phi$ (V: Massive gauge boson; φ: Higgs boson).
- For many masses: lower bounds may be sufficient

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V \phi, \phi \phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V \phi, \phi \phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference
- Parameters in Higgs and squark sector are also needed to predict $\tilde{\chi}_1^0$ detection rate, i.e. $\sigma(\tilde{\chi}_1^0 N \rightarrow \tilde{\chi}_1^0 N)$

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

Parameter space is constrained by:

Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative *b* decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \rightarrow s\gamma) \le 4.45 \cdot 10^{-4}$

w./ A. Djouadi, J.-L. Kneur, hep-ph/0602001

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- Brookhaven $g_{\mu} 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative *b* decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \rightarrow s\gamma) \le 4.45 \cdot 10^{-4}$
- Simple CCB constraints (at weak scale only)

 $m_{1/2}$ [GeV]

• $\tilde{\tau}$ co-annihilation region can be probed entirely

- \checkmark $\tilde{\tau}$ co-annihilation region can be probed entirely
- "Focus point" region with higgsino–like LSP cannot be probed

- $\tilde{\tau}$ co–annihilation region can be probed entirely
- "Focus point" region with higgsino–like LSP cannot be probed
- End of "A-funnel" cannot be probed

- $\tilde{\tau}$ co–annihilation region can be probed entirely
- "Focus point" region with higgsino–like LSP cannot be probed
- End of "A-funnel" cannot be probed

Even in this simplest, most predictive, possibly realistic DM model, existence of thermal WIMP DM does not guarantee new LHC signals!

- $\tilde{\tau}$ co–annihilation region can be probed entirely
- "Focus point" region with higgsino–like LSP cannot be probed
- End of "A-funnel" cannot be probed

Even in this simplest, most predictive, possibly realistic DM model, existence of thermal WIMP DM does not guarantee new LHC signals!

Finetuning arguments *do* guarantee LHC signal, if SUSY is to stabilize the hierarchy.

The precision with which $\Omega_{\tilde{\chi}_1^0}h^2$ can be predicted strongly depends on SUSY parameters: Battaglia et al., hep-ph/0602187

• "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%. Arnowitt et al. (2007) can do better!

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%. Arnowitt et al. (2007) can do better!
- "Funnel region": $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%

The precision with which $\Omega_{\tilde{\chi}_1^0}h^2$ can be predicted strongly depends on SUSY parameters: Battaglia et al., hep-ph/0602187

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to VV, Zh \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%. Arnowitt et al. (2007) can do better!
- "Funnel region": $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%

Based on spectrum information only!

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

The axino Covi et al., hep-ph/9905212...

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; …

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; …
- A modulino

Hidden Sector DM (contd.)

Unfortunately,

• $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{\rm DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2 \propto T_{\rm reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived
- Detection of hidden sector DM seems impossible: Cross sections are way too small!

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

None of these mechanisms in general has observable consequences (except DM density).

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

None of these mechanisms in general has observable consequences (except DM density).

If $\tilde{\chi}_1^0$ makes DM: Can use measurements at colliders to constrain cosmology!

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat} .

None of these mechanisms in general has observable consequences (except DM density).

If $\tilde{\chi}_1^0$ makes DM: Can use measurements at colliders to constrain cosmology! E.g.: assuming thermal WIMP, can determine $H(T_F)$ with relative precision about two times Worse than $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to any)$.(Drees, Imminiyaz, Kakizaki, arXiv:0704.1590)

LHC does not recreate conditions of the early Universe

- LHC does not recreate conditions of the early Universe
- Dark Energy

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging
 - Discovering supersymmetry will have big impact on "landscape" arguments

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging
 - Discovering supersymmetry will have big impact on "landscape" arguments
- Dark Matter:

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging
 - Discovering supersymmetry will have big impact on "landscape" arguments
- Dark Matter:
 - Does not guarantee new signals at LHC

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging
 - Discovering supersymmetry will have big impact on "landscape" arguments
- Dark Matter:
 - Does not guarantee new signals at LHC
 - Do not over-emphasize "DM allowed regions"

- LHC does not recreate conditions of the early Universe
- Dark Energy
 - Direct detection of cosmon in bh decay in principle possible, but very challenging
 - Discovering supersymmetry will have big impact on "landscape" arguments
- Dark Matter:
 - Does not guarantee new signals at LHC
 - Do not over-emphasize "DM allowed regions"
 - Accurate determinations of WIMP couplings would allow to constrain very early Universe