Learning from WIMPs

Manuel Drees

Bonn University

1 Introduction

1 Introduction

2 Learning about the early Universe

- 1 Introduction
- 2 Learning about the early Universe
- 3 Learning about our galaxy

- 1 Introduction
- 2 Learning about the early Universe
- 3 Learning about our galaxy
- 4 Summary

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
- Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Total baryon density is determined by:

Big Bang Nucleosynthesis

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and has (strongly) suppressed coupling to elm radiation

 Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down "tailor-made" WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both *direct* and *indirect* detection of WIMPs

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right) + \sum_{X, Y} n_X \Gamma(X \to \chi + Y)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{ann} = \sigma(\chi \chi \rightarrow SM \text{ particles})$ v: relative velocity between χ 's in their cms $n_{\chi, eq} : \chi$ density in full equilibrium

Assume χ was in full thermal equilibrium after inflation.

Assume χ was in full thermal equilibrium after inflation.

Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_{\chi} h^2 \propto \frac{1}{\langle v \sigma_{\rm ann} \rangle} \sim 0.1 \text{ for } \sigma_{\rm ann} \sim \mathsf{pb}$$

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

- No entropy production after χ decoupled: Not testable at colliders

- y is effectively stable, $\tau_{\chi} \gg \tau_{U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$

Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$

Can we test these assumptions, if Ω_{χ} and "all" particle physics properties of χ are known?

Low temperature scenario

Assume $T_R \lesssim T_F$, $n_{\chi}(T_R) = 0$

Low temperature scenario

Assume $T_R \leq T_F$, $n_{\chi}(T_R) = 0$ Introduce dimensionless variables $Y_{\chi} \equiv \frac{n_{\chi}}{s}, \ x \equiv \frac{m_{\chi}}{T}$

(s: entropy density).

Use non-relativistic expansion of cross section: $\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$

Low temperature scenario

Assume $T_R \leq T_F$, $n_{\chi}(T_R) = 0$ Introduce dimensionless variables $Y_{\chi} \equiv \frac{n_{\chi}}{s}, \ x \equiv \frac{m_{\chi}}{T}$

(s: entropy density).

Use non–relativistic expansion of cross section: $\sigma_{\rm ann} = a + bv^2 + \mathcal{O}(v^4) \Longrightarrow \langle \sigma_{\rm ann} v \rangle = a + 6b/x$

Using explicit form of H, $Y_{\chi,eq}$, Boltzmann eq. becomes $\frac{dY_{\chi}}{dx} = -f\left(a + \frac{6b}{x}\right)x^{-2}\left(Y_{\chi}^2 - cx^3e^{-2x}\right).$ $f = 1.32 \ m_{\chi}M_{\rm Pl}\sqrt{g_*}, \ c = 0.0210 \ g_{\chi}^2/g_*^2$

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi} h^2 \propto \sigma_{\rm ann}$ in this case!

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi}h^2 \propto \sigma_{\rm ann}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st–order solution

$$Y_1 = Y_0 + \delta \,.$$

 $\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f\left(a + \frac{6b}{x}\right)\frac{Y_0(x)^2}{x^2}$$

 $\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\rm ann}^3$

Low temperature scenario (cont.'d)

For $T_R \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2}x_R e^{-2x_R} + \left(\frac{a}{4} + 3b\right) e^{-2x_R}\right]$$

Note: $\Omega_{\chi}h^2 \propto \sigma_{\rm ann}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st–order solution

$$Y_1 = Y_0 + \delta \,.$$

 $\delta < 0$ describes pure annihilation:

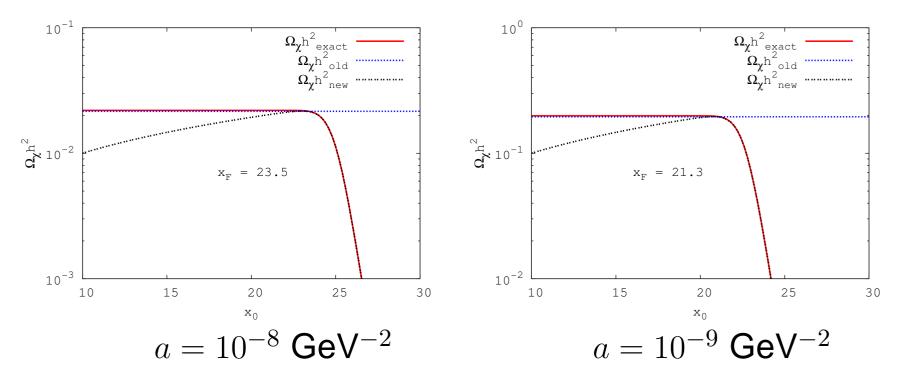
$$\frac{d\delta}{dx} = -f\left(a + \frac{6b}{x}\right)\frac{Y_0(x)^2}{x^2}$$

 $\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\rm ann}^3$

Get good results for $\Omega_{\chi}h^2$ for all $T_R \leq T_F$ through "resummation": $Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0}\right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1.r}$

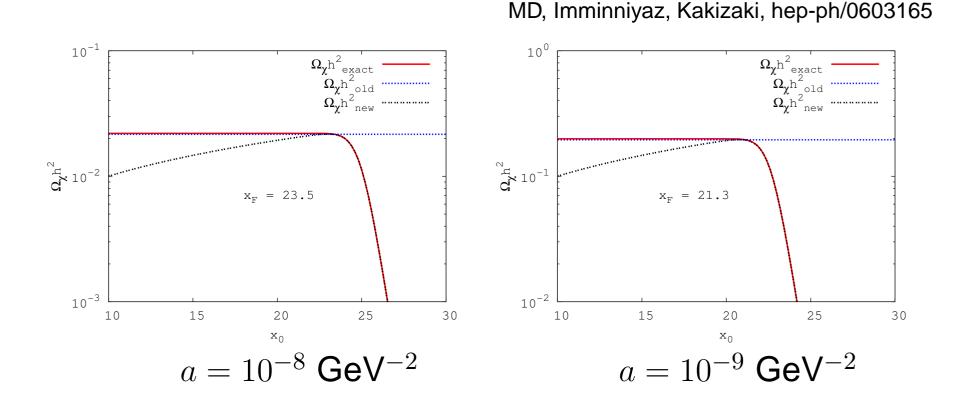
 $Y_{1,r} \propto 1/\sigma_{
m ann}$ for $|\delta| \gg Y_0$ MD, Imminniyaz, Kakizaki, hep-ph/0603165

Numerical comparison: b = 0



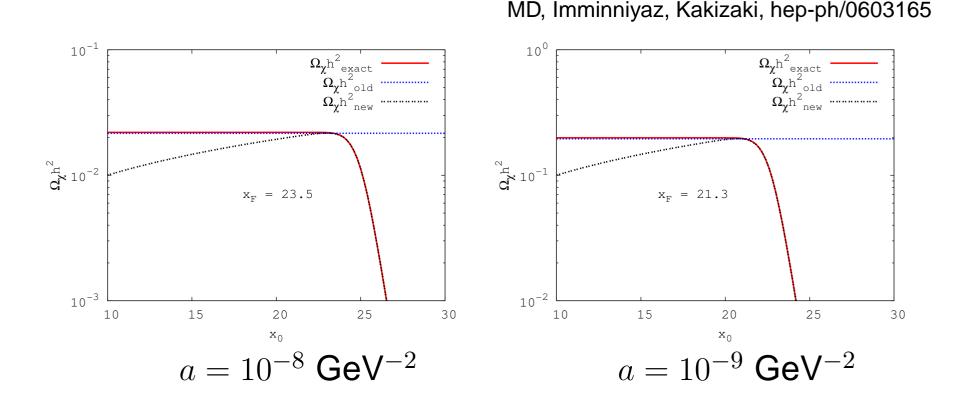
MD, Imminniyaz, Kakizaki, hep-ph/0603165

Numerical comparison: b = 0



Can extend validity of new solution to all T, including $T \gg T_R$, by using $\Omega_{\chi}(T_{\text{max}})$ if $T_R > T_{\text{max}} \simeq T_F$

Numerical comparison: b = 0



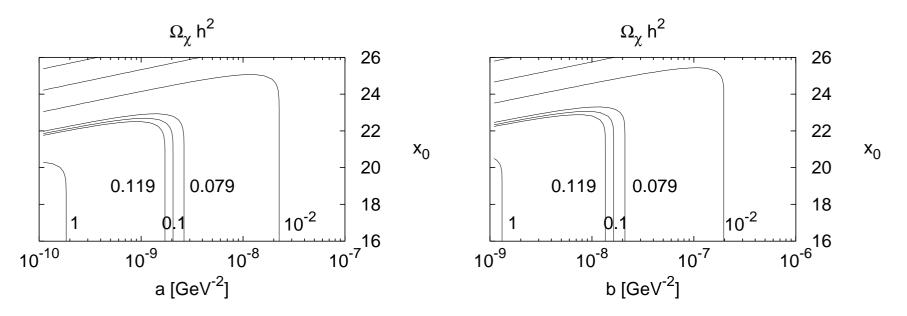
Can extend validity of new solution to all T, including $T \gg T_R$, by using $\Omega_{\chi}(T_{\text{max}})$ if $T_R > T_{\text{max}} \simeq T_F$

Note: $\Omega_{\chi}(T_R) \leq \Omega_{\chi}(T_R \gg T_F)$

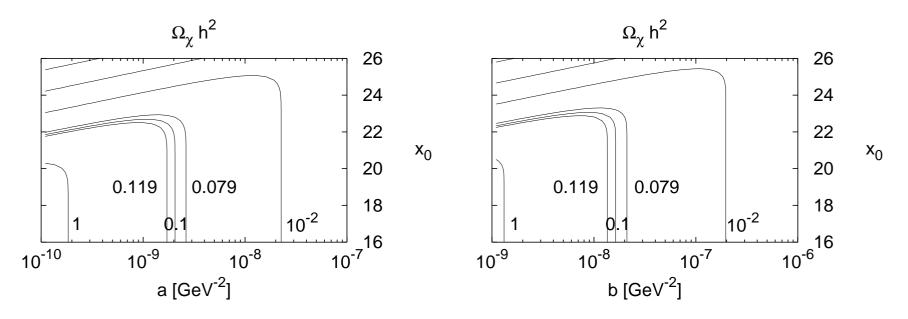
MD, Imminniyaz, Kakizaki, in progress

If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi} h^2 \simeq 0.1$ imposes lower bound on T_R :

⁻ MD, Imminniyaz, Kakizaki, in progress If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi}h^2 \simeq 0.1$ imposes lower bound on T_R :

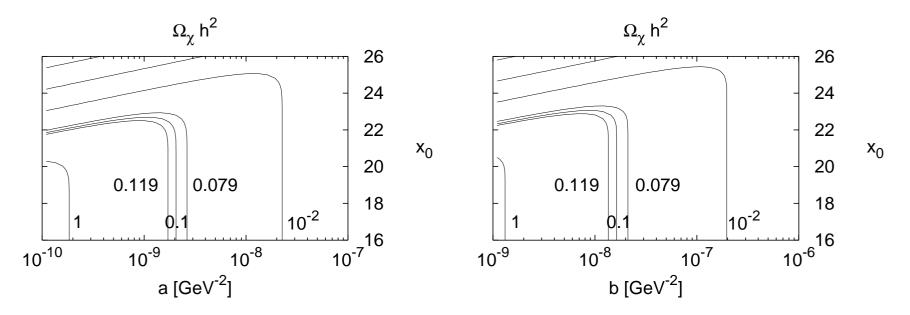


[–] MD, Imminniyaz, Kakizaki, in progress If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi}h^2 \simeq 0.1$ imposes lower bound on T_R :



 $\implies T_R \geq \frac{m_{\chi}}{23}$ Holds independent of $\sigma_{\text{ann}}!$

⁻ MD, Imminniyaz, Kakizaki, in progress If $n_{\chi}(T_R) = 0$, demanding $\Omega_{\chi}h^2 \simeq 0.1$ imposes lower bound on T_R :



 $\implies T_R \ge \frac{m_{\chi}}{23}$ Holds independent of $\sigma_{ann}!$ If $T_R \simeq m_{\chi}/22$: Get right $\Omega_{\chi}h^2$ for wide range of cross sections!

Assumptions

• $\Omega_{\chi}h^2$ is known (see below)

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)\,,\ z = T/m_{\chi}$$

Assumptions

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)\,,\ z = T/m_{\chi}$$

• Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

 $A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + (z - z_{F,st})^2 A''(z_{F,st})/2$

Assumptions

- $\Omega_{\chi}h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)
- Parameterize modified expansion history:

$$A(z) = H_{\rm st}(z)/H(z)\,,\ z = T/m_{\chi}$$

• Around decoupling: $z \ll 1 \Longrightarrow$ use Taylor expansion

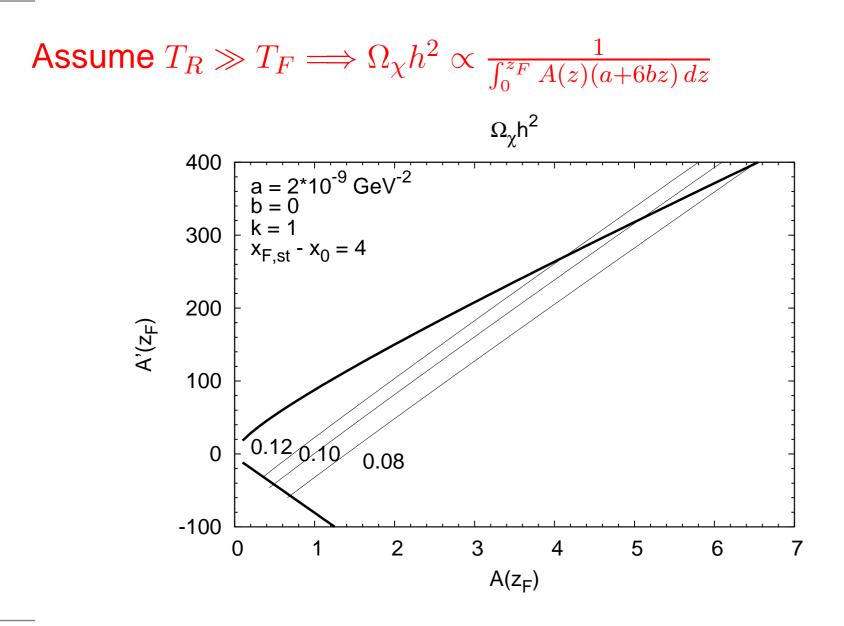
 $A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + (z - z_{F,st})^2 A''(z_{F,st})/2$

• Successful BBN $\implies k \equiv A(z \rightarrow 0) = 1.0 \pm 0.2$

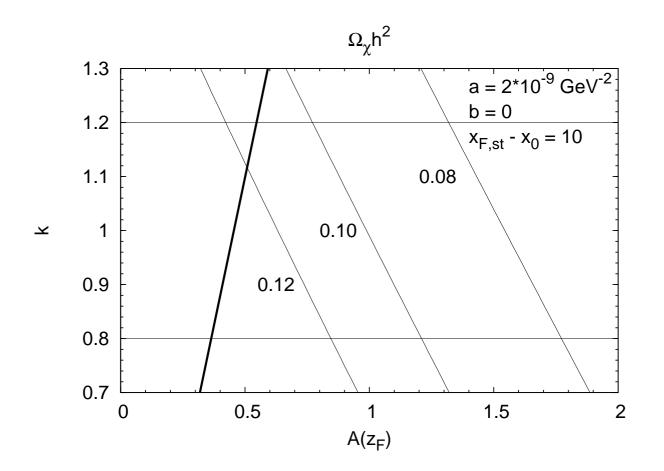
Constraining H(T) (cont.d)

Assume $T_R \gg T_F \Longrightarrow \Omega_{\chi} h^2 \propto \frac{1}{\int_0^{z_F} A(z)(a+6bz) dz}$

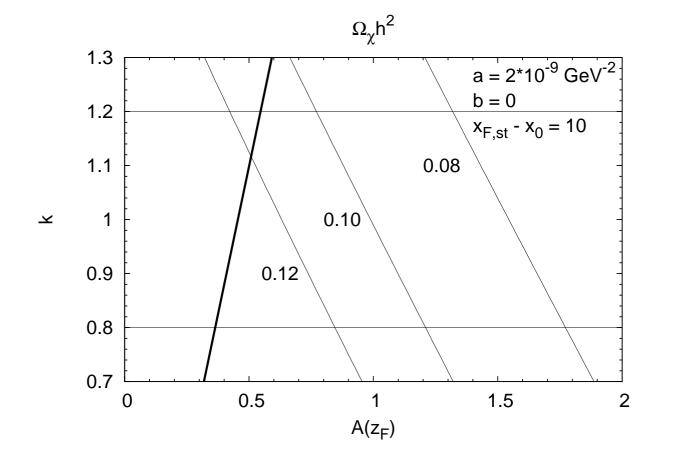
Constraining H(T) (cont.d)



The case $A''(z_{F,st}) = 0$



The case $A''(z_{F,st}) = 0$



Relative constraint on $A(z_{F,st})$ weaker than that on $\Omega_{\chi}h^2$.

WIMPs are everywhere!

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep—underground location; way to distinguish recoils from β, γ events; neutron screening; ...

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...
- Is being pursued vigorously around the world!

Direct WIMP detection: theory

Counting rate given by

$$\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$$

Q: recoil energy

 $A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.: encodes particle physics}$

F(Q): nuclear form factor

v: WIMP velocity in lab frame

 $v_{\rm min}^2 = m_N Q / (2m_r^2)$

 v_{esc} : Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution

Direct WIMP detection: theory

Counting rate given by

$$\frac{dR}{dQ} = AF^2(Q) \int_{v_{\min}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$$

Q: recoil energy

 $A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.: encodes particle physics}$

F(Q): nuclear form factor

v: WIMP velocity in lab frame

 $v_{\rm min}^2 = m_N Q / (2m_r^2)$

 v_{esc} : Escape velocity from galaxy $f_1(v)$: normalized one-dimensional WIMP velocity distribution

In principle, can invert this relation to measure $f_1(v)$!

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v) dv = 1$).

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v) dv = 1$). Need to know form factor \implies stick to spin-independent scattering.

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^{\infty} f_1(v) dv = 1$). Need to know form factor \Longrightarrow stick to spin-independent scattering. Need to know m_{χ} , but do *not* need σ_0, ρ .

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v) dv = 1$).

Need to know form factor \implies stick to spin-independent scattering.

Need to know m_{χ} , but do *not* need σ_0, ρ .

Need to know *slope* of recoil spectrum!

Direct reconstruction of f_1

MD & C.L. Shan, in progress

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2 v^2/m_N}$$

 \mathcal{N} : Normalization ($\int_0^\infty f_1(v) dv = 1$).

Need to know form factor \implies stick to spin-independent scattering.

Need to know m_{χ} , but do *not* need σ_0, ρ .

Need to know *slope* of recoil spectrum!

dR/dQ is approximately exponential: better work with logarithmic slope

Determining the logarithmic slope of dR/dQ

 Good local observable: Average energy transfer $\langle Q \rangle_i$ in *i*-th bin

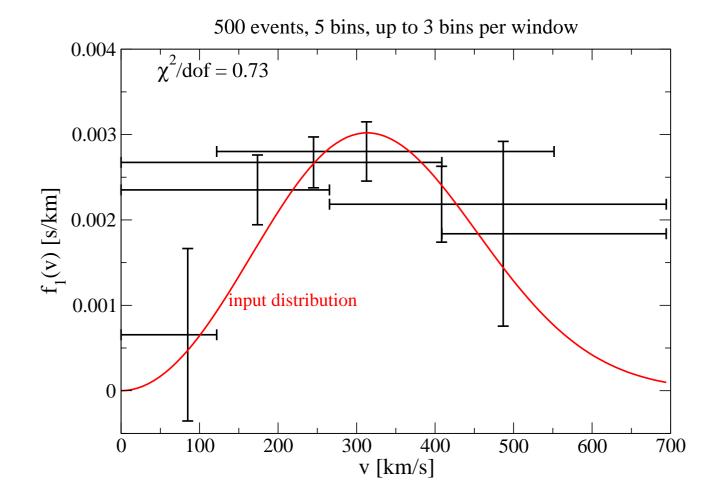
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in $i-{\rm th\ bin}$
- Stat. error on slope \propto (bin width)^{-1.5} \implies need large bins

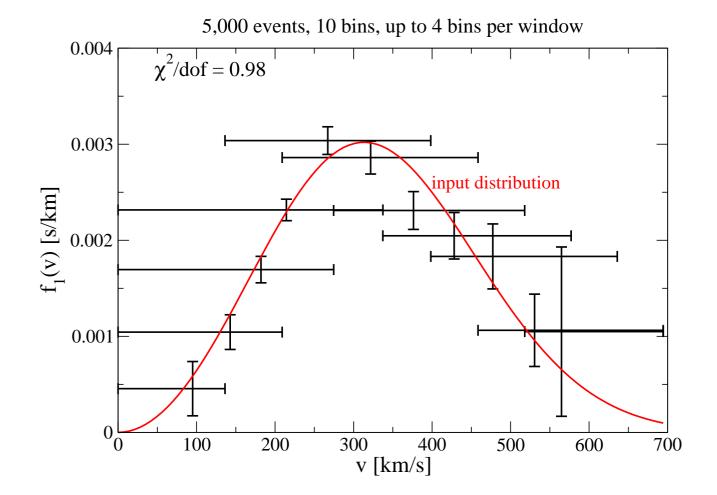
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i-th bin
- Stat. error on slope \propto (bin width)^{-1.5} \implies need large bins
- To maximize information: use overlapping bins ("windows")

Recoil spectrum: prediction and simulated measurement

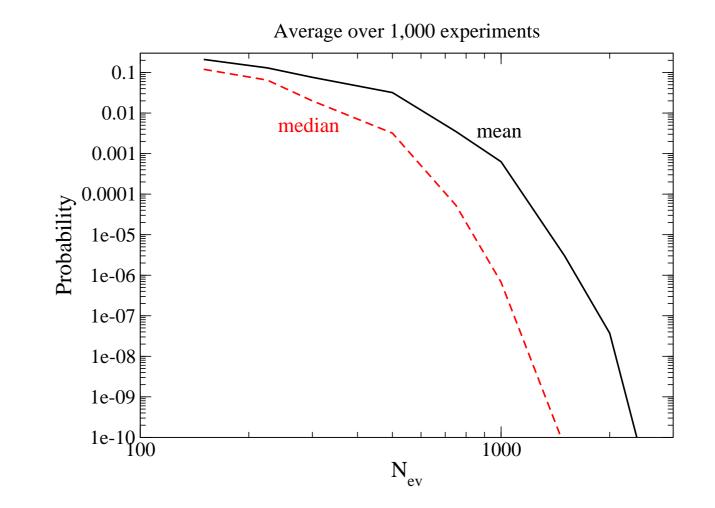


Recoil spectrum: prediction and simulated measurement

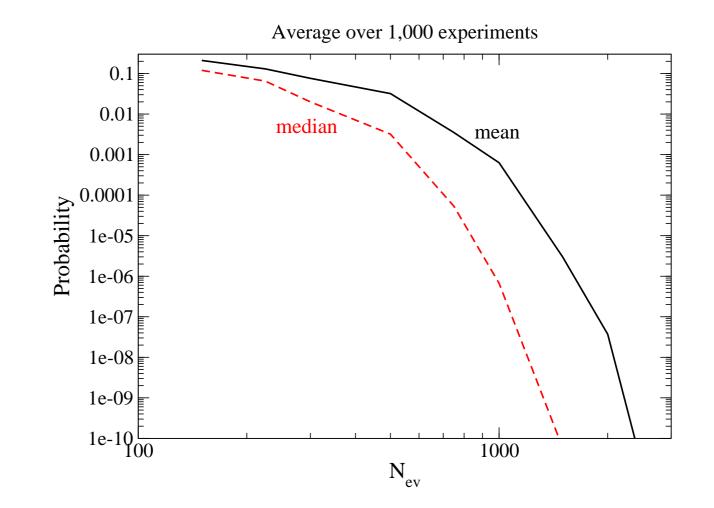


Learning from WIMPs - p. 23/29

Statistical exclusion of constant f_1



Statistical exclusion of constant f_1



Need several hundred events to begin direct reconstruction!

 $\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv \\ \propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\begin{aligned} \langle v^n \rangle &\equiv \int_0^\infty v^n f_1(v) dv \\ &\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \\ &\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)} \end{aligned}$$

$$\begin{aligned} \langle v^n \rangle &\equiv \int_0^\infty v^n f_1(v) dv \\ &\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \\ &\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)} \end{aligned}$$

Can incorporate finite energy (hence velocity) threshold

$$\begin{aligned} \langle v^n \rangle &\equiv \int_0^\infty v^n f_1(v) dv \\ &\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \\ &\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)} \end{aligned}$$

Can incorporate finite energy (hence velocity) threshold Moments are strongly correlated!

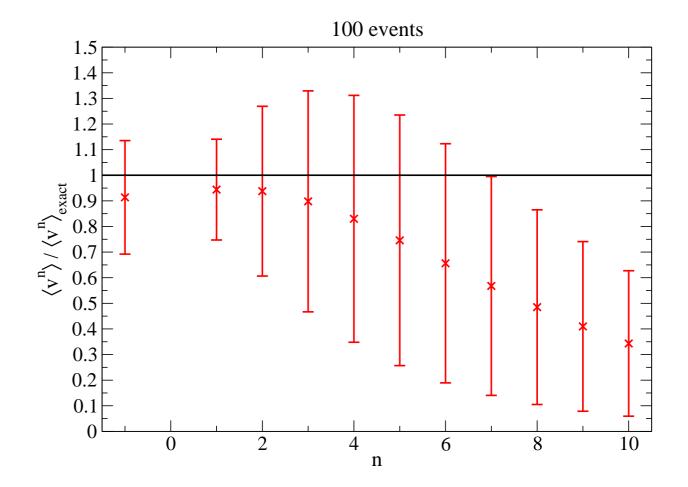
$$\begin{aligned} \langle v^n \rangle &\equiv \int_0^\infty v^n f_1(v) dv \\ &\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \\ &\to \sum_{\text{events } a} \frac{Q_a^{(n-1)/2}}{F^2(Q_a)} \end{aligned}$$

Can incorporate finite energy (hence velocity) threshold

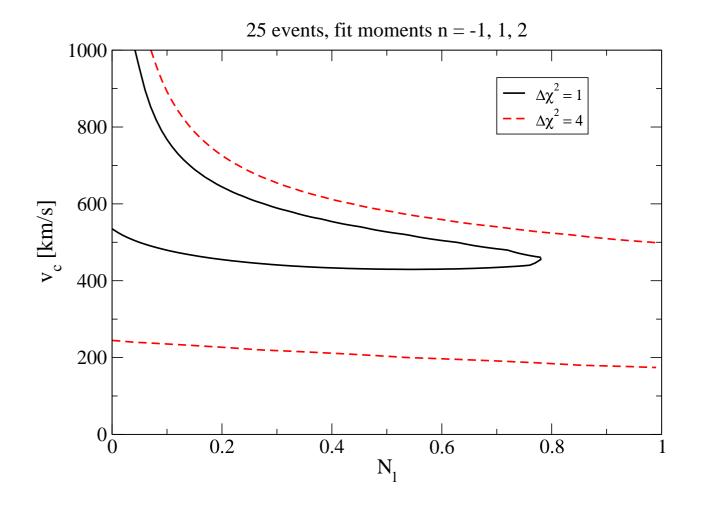
Moments are strongly correlated!

High moments, and their errors, are underestimated in "typical" experiment: get large contribution from large *Q*

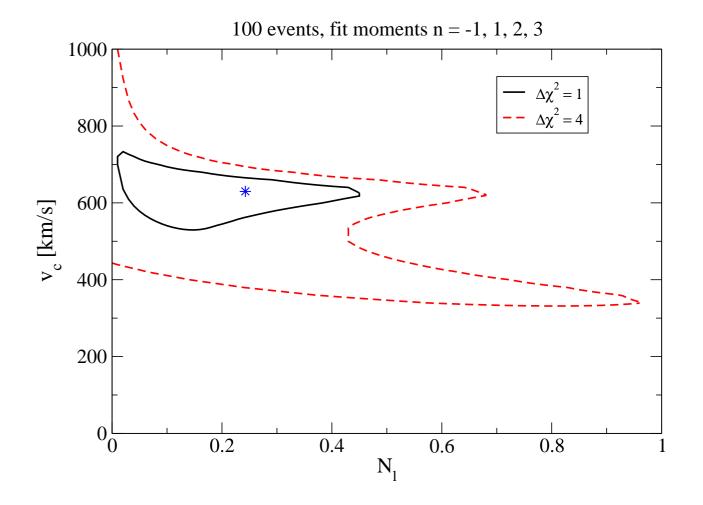
Determination of first 10 moments



Constraining a "late infall" component



Constraining a "late infall" component



Learning about the Early Universe:

• If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$

- If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_{\chi}h^2$

- If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_{\chi}h^2$
- Learning about our galaxy

- If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_{\chi}h^2$
- Learning about our galaxy
 - Direct reconstruction of $f_1(v)$ needs several hundred events

- If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_{\chi}h^2$
- Learning about our galaxy
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non-trivial statements about moments of f_1 possible with few dozen events

- If all DM is thermal WIMPs: $T_R \ge m_{\chi}/23 \sim 10^4 T_{\rm BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_{\chi}h^2$
- Learning about our galaxy
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non-trivial statements about moments of f_1 possible with few dozen events
 - Needs to be done to determine ρ_{χ} : required input for learning about early Universe!