Black Holes Chromospheres at the LHC?

Christian Alig, MD, Kin-ya Oda

Bonn University

1 TeV Black Holes

- 1 TeV Black Holes
- 2 Arguments for and against a Chromosphere

- 1 TeV Black Holes
- 2 Arguments for and against a Chromosphere
- 3 The Simulation

- 1 TeV Black Holes
- 2 Arguments for and against a Chromosphere
- 3 The Simulation
- 4 Numerical Results

- 1 TeV Black Holes
- 2 Arguments for and against a Chromosphere
- 3 The Simulation
- 4 Numerical Results
- **5 Summary**

Hierarchy Problem: Why is $M_Z \ll M_{\rm Planck}$?

Hierarchy Problem: Why is $M_Z \ll M_{\rm Planck}$?

Possible answer: It isn't!

Hierarchy Problem: Why is $M_Z \ll M_{\rm Planck}$?

Possible answer: It isn't!

Needs existence of "large" spatial extra dimensions.

Hierarchy Problem: Why is $M_Z \ll M_{\rm Planck}$?

Possible answer: It isn't!

Needs existence of "large" spatial extra dimensions.

Simplest realisation ("ADD scenario"): Have flat, compact extra dimensions with radius R. Gravitational potential:

$$V(r) = \begin{cases} \frac{m}{M_{\text{Pl}}^2 r}, & \text{for } r \ge R\\ \frac{m}{M_{\text{d}}^{d+2} r^{1+d}}, & \text{for } r \le R \end{cases}$$

Hierarchy Problem: Why is $M_Z \ll M_{\rm Planck}$?

Possible answer: It isn't!

Needs existence of "large" spatial extra dimensions.

Simplest realisation ("ADD scenario"): Have flat, compact extra dimensions with radius R. Gravitational potential:

$$V(r) = \begin{cases} \frac{m}{M_{\text{Pl}}^2 r}, & \text{for } r \ge R\\ \frac{m}{M_{\text{t}}^{d+2} r^{1+d}}, & \text{for } r \le R \end{cases}$$

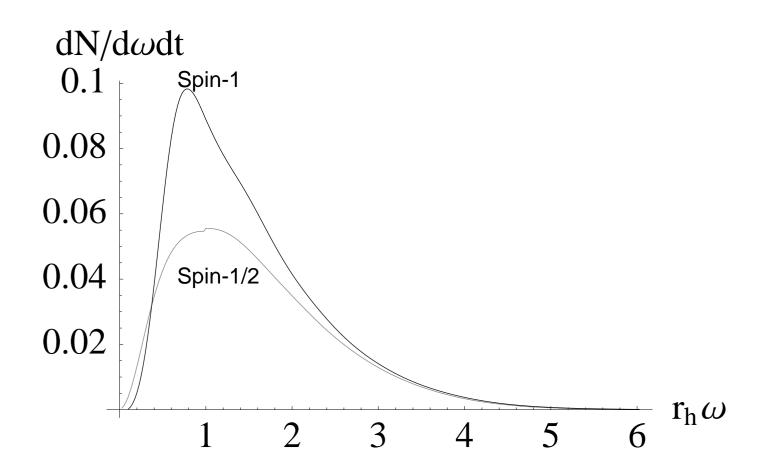
Matching at r=R and requiring $M_*\simeq \text{TeV}$ gives $R\simeq 1$ mm (100 fm) for d=2 (6).

• Gravitational interactions become strong for $\sqrt{s} \gtrsim M_*$

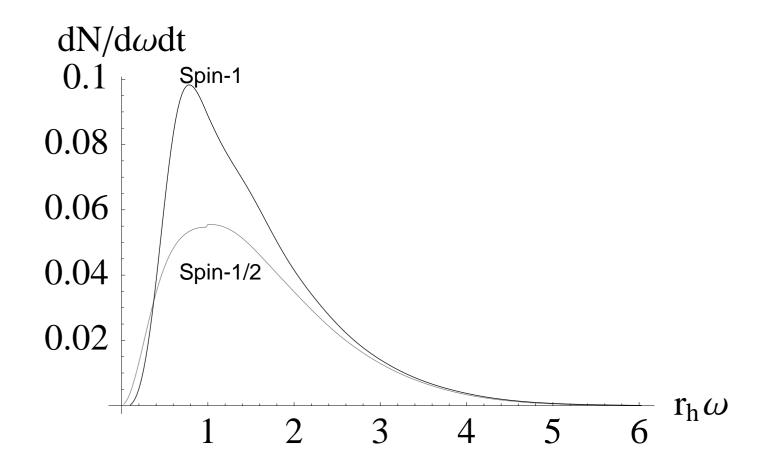
- Gravitational interactions become strong for $\sqrt{s} \gtrsim M_*$
- Most dramatic consequence: Production of black holes with mass $M > \text{few } M_*!$

- Gravitational interactions become strong for $\sqrt{s} \gtrsim M_*$
- Most dramatic consequence: Production of black holes with mass $M > \text{few } M_*!$
- Cross section: $\sigma(M) \simeq \pi r_h(M)^2$, with Schwarzschild radius

$$r_h(M) \propto \frac{1}{M_*} \left(\frac{M}{M_*}\right)^{1/(1+d)}$$
.


- Gravitational interactions become strong for $\sqrt{s} \gtrsim M_*$
- Most dramatic consequence: Production of black holes with mass $M > \text{few } M_*!$
- Cross section: $\sigma(M) \simeq \pi r_h(M)^2$, with Schwarzschild radius

$$r_h(M) \propto \frac{1}{M_*} \left(\frac{M}{M_*}\right)^{1/(1+d)}$$
.


Decay through Hawking radiation, with temperature

$$T = \frac{1+d}{4\pi r_h} \propto M_* \left(\frac{M_*}{M}\right)^{1/(1+d)}.$$

Decay spectrum

Decay spectrum

 $\langle N_q \rangle = 8.4~(18.6),~\langle N_g \rangle = 3.8~(8.3)$ for d=6, minimal allowed M_* , M=5~(10) TeV.

Anchordoqui & Goldberg 2002

Basic claim: High parton density leads to multiple interactions, hence thermalization!

Anchordoqui & Goldberg 2002

- Basic claim: High parton density leads to multiple interactions, hence thermalization!
- Would mean: No distinct jets can be seen.

Anchordoqui & Goldberg 2002

- Basic claim: High parton density leads to multiple interactions, hence thermalization!
- Would mean: No distinct jets can be seen.
- Cross section for $2 \to 3$ processes: $\sigma_b \simeq \frac{8\alpha_s^3}{\Lambda^2} \ln\left(\frac{2Q}{\Lambda}\right)$. Q: Momentum scale of process; Λ : IR cut-off $\simeq 1/r_{\rm sphere}$.

Anchordoqui & Goldberg 2002

- Basic claim: High parton density leads to multiple interactions, hence thermalization!
- Would mean: No distinct jets can be seen.
- Cross section for $2 \to 3$ processes: $\sigma_b \simeq \frac{8\alpha_s^3}{\Lambda^2} \ln\left(\frac{2Q}{\Lambda}\right)$. Q: Momentum scale of process; Λ : IR cut-off $\simeq 1/r_{\rm sphere}$.
- Resulting number of interactions per parton:

$$\mathcal{N}_{\rm int} \simeq 0.15 \frac{N_{q,\rm init}}{10} \left(\frac{\alpha_s(Q_{\rm min})}{0.2}\right)^3 \ln\left(\frac{2Q}{Q_{\rm min}}\right) \ln\left(\frac{\Gamma_{\rm bh}}{Q_{\rm min}}\right).$$

Anchordoqui & Goldberg 2002

- Basic claim: High parton density leads to multiple interactions, hence thermalization!
- Would mean: No distinct jets can be seen.
- Cross section for $2 \to 3$ processes: $\sigma_b \simeq \frac{8\alpha_s^3}{\Lambda^2} \ln\left(\frac{2Q}{\Lambda}\right)$. Q: Momentum scale of process; Λ : IR cut-off $\simeq 1/r_{\rm sphere}$.
- Resulting number of interactions per parton:

$$\mathcal{N}_{\rm int} \simeq 0.15 \frac{N_{q,\rm init}}{10} \left(\frac{\alpha_s(Q_{\rm min})}{0.2}\right)^3 \ln\left(\frac{2Q}{Q_{\rm min}}\right) \ln\left(\frac{\Gamma_{\rm bh}}{Q_{\rm min}}\right).$$

• Gives $\mathcal{N}_{\mathrm{tot}} \simeq 3~(30)$ for $N_{q,\mathrm{init}} = 10,~Q = 400$ GeV, $Q_{\mathrm{min}} = 9~(1.8)$ TeV.

Most QCD interactions are soft

- Most QCD interactions are soft
- Most emitted gluons are soft and/or collinear

- Most QCD interactions are soft
- Most emitted gluons are soft and/or collinear
- most interactions have little effect on direction and energy of jets

- Most QCD interactions are soft
- Most emitted gluons are soft and/or collinear
- most interactions have little effect on direction and energy of jets
- Uncertainty principle: partons only "have time" for one interaction with $\Lambda = 1/r$ while travelling distance r.

- Most QCD interactions are soft
- Most emitted gluons are soft and/or collinear
- most interactions have little effect on direction and energy of jets
- Uncertainty principle: partons only "have time" for one interaction with $\Lambda = 1/r$ while travelling distance r.
- No onset of chromosphere formation seen in 6-jet events (UA2, CDF).

Based on VNI MC code Geiger et al. 1998; Bass et al. 1999

- Based on VNI MC code Geiger et al. 1998; Bass et al. 1999
- Need to treat both (final state) showering and parton-parton collisions

- Based on VNI MC code Geiger et al. 1998; Bass et al. 1999
- Need to treat both (final state) showering and parton-parton collisions
- Essentially classical treatment: showering, scattering takes time 1/Q (in appropriate system). Initial partonic virtualities are of order of their energies.

- Based on VNI MC code Geiger et al. 1998; Bass et al. 1999
- Need to treat both (final state) showering and parton-parton collisions
- Essentially classical treatment: showering, scattering takes time 1/Q (in appropriate system). Initial partonic virtualities are of order of their energies.
- Showering always reduces the virtuality; scattering can increase or reduce virtuality.

- Based on VNI MC code Geiger et al. 1998; Bass et al. 1999
- Need to treat both (final state) showering and parton-parton collisions
- Essentially classical treatment: showering, scattering takes time 1/Q (in appropriate system). Initial partonic virtualities are of order of their energies.
- Showering always reduces the virtuality; scattering can increase or reduce virtuality.
- $2 \rightarrow 2$ scattering happens at point of closest approach, if $\sigma > \pi d^2$.

- Based on VNI MC code Geiger et al. 1998; Bass et al. 1999
- Need to treat both (final state) showering and parton-parton collisions
- Essentially classical treatment: showering, scattering takes time 1/Q (in appropriate system). Initial partonic virtualities are of order of their energies.
- Showering always reduces the virtuality; scattering can increase or reduce virtuality.
- 2 \rightarrow 2 scattering happens at point of closest approach, if $\sigma \geq \pi d^2$.
- Allow scattering only with $Q_{\text{scatt}} \simeq p_T > \text{initial virtuality!}$

Initial Set-up

• Use $\langle N_{q,g} \rangle$ and spectra from above.

Initial Set-up

- Use $\langle N_{q,q} \rangle$ and spectra from above.
- Partons start on shell with $r=r_h$ and thickness= $1/\Gamma_{\rm bh}\sim (100~{\rm GeV})^{-1}$.

Initial Set-up

- Use $\langle N_{q,q} \rangle$ and spectra from above.
- Partons start on shell with $r=r_h$ and thickness= $1/\Gamma_{\rm bh}\sim (100~{\rm GeV})^{-1}$.
- Directions chosen randomly in half—sphere pointing away from bh.

Initial Set-up

- Use $\langle N_{q,g} \rangle$ and spectra from above.
- Partons start on shell with $r=r_h$ and thickness= $1/\Gamma_{\rm bh}\sim (100~{\rm GeV})^{-1}$.
- Directions chosen randomly in half—sphere pointing away from bh.
- Further details in hep-ph/0610269.

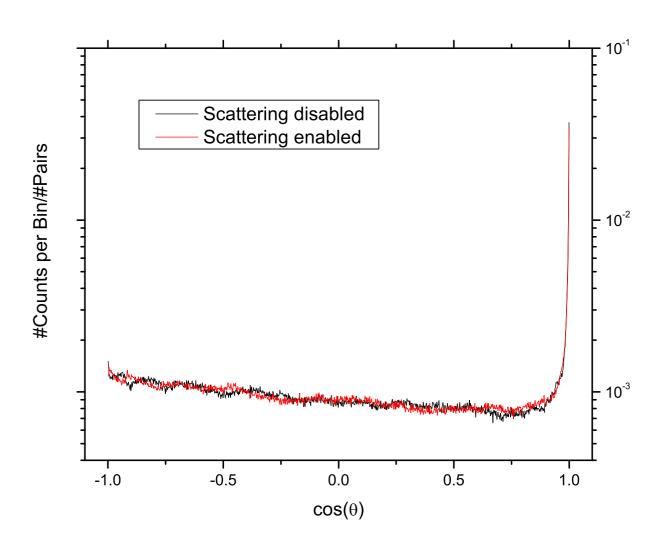
Numerical Results

Study variables that do not assume existence of jets!

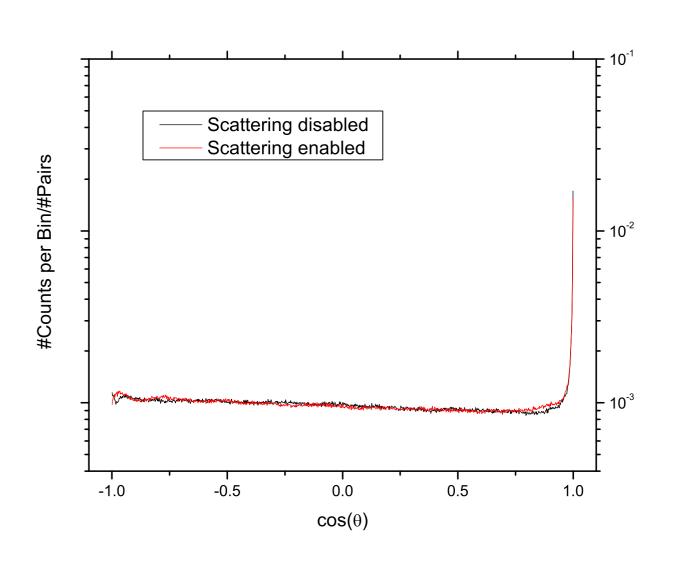
Numerical Results

Study variables that do not assume existence of jets!

Angular correlations between energetic charged particles


Numerical Results

Study variables that do not assume existence of jets!

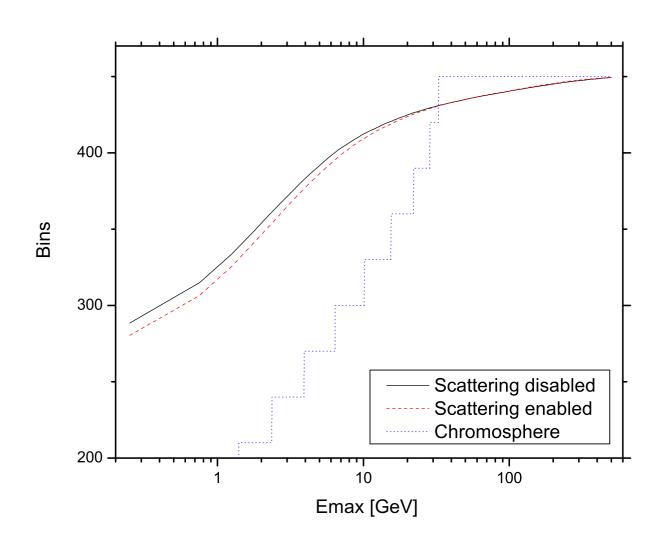

- Angular correlations between energetic charged particles
- Overall energy flow pattern

Angular Correlations, M=5 TeV

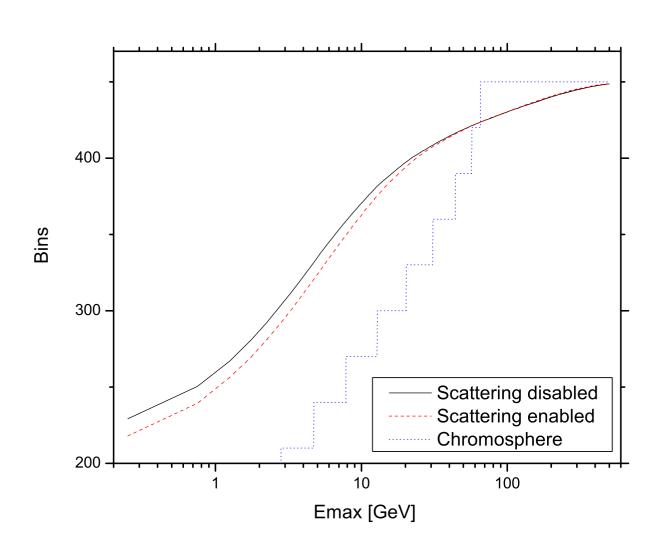
Angle between pairs of charged particles with E > 4 GeV.

Angular Correlations, $M=10~{\rm TeV}$

"Chromosphere" should have essentially flat angular distribution of correlation function


- "Chromosphere" should have essentially flat angular distribution of correlation function
- Strong peak at $\cos \theta = 1$ indicates existence of jets

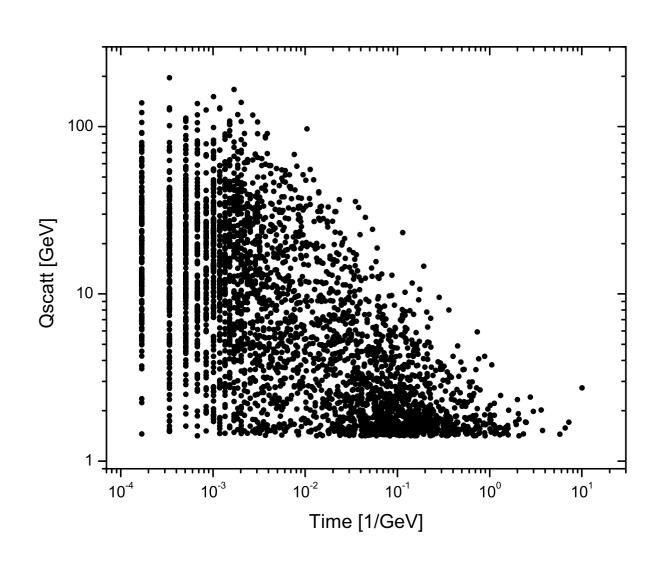
- "Chromosphere" should have essentially flat angular distribution of correlation function
- Strong peak at $\cos \theta = 1$ indicates existence of jets
- Peak is smaller at large M due to larger number of slightly softer initial partons


- "Chromosphere" should have essentially flat angular distribution of correlation function
- Strong peak at $\cos \theta = 1$ indicates existence of jets
- Peak is smaller at large M due to larger number of slightly softer initial partons
- Mild increase towards $\cos \theta = -1$ due to momentum conservation (angle measured in bh rest frame!)

Energy Flow, M = 5 TeV

Divide phase space in 15×30 cells in ϕ and η . Plot number of cells with $E < E_{\rm max}$:

Energy Flow, M = 10 TeV


See many more empty cells, and more cells with very high energy, than expected for chromosphere

- See many more empty cells, and more cells with very high energy, than expected for chromosphere
- Pattern is consistent with existence of well-defined jets

- See many more empty cells, and more cells with very high energy, than expected for chromosphere
- Pattern is consistent with existence of well-defined jets
- Scattering slightly reduces number of empty cells; but: underlying event not included!

- See many more empty cells, and more cells with very high energy, than expected for chromosphere
- Pattern is consistent with existence of well-defined jets
- Scattering slightly reduces number of empty cells; but: underlying event not included!
- Find on average 16 (53) scattering reactions for $M=5\ (10)$ TeV.

Scatterings from 100 bh decays (M = 10 TeV)

TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions

- TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions
- Cross section might be sufficient for $M \lesssim 10 \text{ TeV}$ (depending on M_*)

- TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions
- Cross section might be sufficient for $M \lesssim 10 \text{ TeV}$ (depending on M_*)
- Details of signature depend on how the bh's decay

- TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions
- Cross section might be sufficient for $M \lesssim 10 \text{ TeV}$ (depending on M_*)
- Details of signature depend on how the bh's decay
- Simulated bh decay into partons including both showering and $2 \rightarrow 2$ scatterings

- TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions
- Cross section might be sufficient for $M \lesssim 10 \text{ TeV}$ (depending on M_*)
- Details of signature depend on how the bh's decay
- Simulated bh decay into partons including both showering and $2 \rightarrow 2$ scatterings
- Effects of scattering are small: No evidence for formation of "chromosphere"; well-defined jets should be detectable

- TeV black holes offer completely new LHC signature for models with "large" spatial extra dimensions
- Cross section might be sufficient for $M \lesssim 10 \text{ TeV}$ (depending on M_*)
- Details of signature depend on how the bh's decay
- Simulated bh decay into partons including both showering and $2 \rightarrow 2$ scatterings
- Effects of scattering are small: No evidence for formation of "chromosphere"; well-defined jets should be detectable
- Energy spectrum of jets is sensitive to M, M_*, d .