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Simplest realisation (“ADD scenario”): Have flat, compact
extra dimensions with radius R. Gravitational potential:

V (r) =

{

m
M2

Pl
r
, for r ≥ R

m
Md+2

∗ r1+d
, for r ≤ R

Matching at r = R and requiring M∗ ≃ TeV gives R ≃ 1 mm
(100 fm) for d = 2 (6).
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s >∼ M∗

Most dramatic consequence: Production of black holes
with mass M > few M∗!

Cross section: σ(M) ≃ πrh(M)2, with Schwarzschild
radius

rh(M) ∝ 1

M∗

(

M

M∗

)1/(1+d)

.

Decay through Hawking radiation, with temperature
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〈Nq〉 = 8.4 (18.6), 〈Ng〉 = 3.8 (8.3) for d = 6, minimal allowed
M∗, M = 5 (10) TeV.
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Gives Ntot ≃ 3 (30) for Nq,init = 10, Q = 400 GeV,
Qmin = 9 (1.8) TeV.
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Counterarguments

Most QCD interactions are soft

Most emitted gluons are soft and/or collinear

=⇒most interactions have little effect on direction and
energy of jets

Uncertainty principle: partons only “have time” for one
interaction with Λ = 1/r while travelling distance r.

No onset of chromosphere formation seen in 6–jet
events (UA2, CDF).
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Simulation

Based on VNI MC code Geiger et al. 1998; Bass et al. 1999

Need to treat both (final state) showering and
parton–parton collisions

Essentially classical treatment: showering, scattering
takes time 1/Q (in appropriate system). Initial partonic
virtualities are of order of their energies.

Showering always reduces the virtuality; scattering can
increase or reduce virtuality.

2 → 2 scattering happens at point of closest approach, if
σ ≥ πd2.

Allow scattering only with Qscatt ≃ pT > initial virtuality!
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Initial Set–up

Use 〈Nq,g〉 and spectra from above.

Partons start on shell with r = rh and
thickness= 1/Γbh ∼ (100 GeV)−1.

Directions chosen randomly in half–sphere pointing
away from bh.

Further details in hep–ph/0610269.
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Numerical Results

Study variables that do not assume existence of jets!

Angular correlations between energetic charged
particles

Overall energy flow pattern
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Angular Correlations, M = 5 TeV

Angle between pairs of charged particles with E > 4 GeV.
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Angular Correlations, M = 10 TeV
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Interpretation

“Chromosphere” should have essentially flat angular
distribution of correlation function

Strong peak at cos θ = 1 indicates existence of jets

Peak is smaller at large M due to larger number of
slightly softer initial partons

Mild increase towards cos θ = −1 due to momentum
conservation (angle measured in bh rest frame!)
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Energy Flow, M = 5 TeV

Divide phase space in 15×30 cells in φ and η. Plot number
of cells with E < Emax:
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Energy Flow, M = 10 TeV
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Interpretation

See many more empty cells, and more cells with very
high energy, than expected for chromosphere

Pattern is consistent with existence of well–defined jets

Scattering slightly reduces number of empty cells; but:
underlying event not included!

Find on average 16 (53) scattering reactions for
M = 5 (10) TeV.
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Scatterings from 100 bh decays (M = 10 TeV)
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Summary and Conclusions

TeV black holes offer completely new LHC signature for
models with “large” spatial extra dimensions

Cross section might be sufficient for M <∼ 10 TeV
(depending on M∗)

Details of signature depend on how the bh’s decay

Simulated bh decay into partons including both
showering and 2 → 2 scatterings

Effects of scattering are small: No evidence for
formation of “chromosphere”; well–defined jets should
be detectable

Energy spectrum of jets is sensitive to M, M∗, d.
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