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1 DM and Missing ET

Requirements for a good DM candidate:

Must have lifetime ≫ τU
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1 DM and Missing ET

Requirements for a good DM candidate:

Must have lifetime ≫ τU

Must be electrically neutral (otherwise not dark)

Must have correct relic density: ΩDM ≃ 0.22

If DM consists of thermally produced “elementary” particles:
Leads to events with missing ET at colliders!

Counter–examples: axions; dark atoms; primordial black holes; keV

neutrinos: not covered in this talk. Note: Proves that LHC does not “recreate

conditions of the early universe”!
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Thermal production of DM particles χ

Assume χ was in full thermal equilibrium with SM
particles at sufficiently temperature T :

χ production rate nχ〈σ(χχ → SM)vχ〉 > expansion rate H
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Thermal production of DM particles χ

Assume χ was in full thermal equilibrium with SM
particles at sufficiently temperature T :

χ production rate nχ〈σ(χχ → SM)vχ〉 > expansion rate H

nχ ∝ e−mχ/T , 〈σ(χχ → SM)v〉 ∝ T 0 or2, H ∝ T 2/MPlanck

=⇒ equality (“freeze-out”) reached at TF ≃ mχ/20

=⇒ Ωχh2 ≃
0.1 pb · c

〈σ(χχ → SM)v〉

Indicates weak-scale χχ annihilation cross section!
(“WIMP miracle”)
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WIMPs and Early Universe

Ωχh2 can be changed a lot in non–standard cosmologies
(involving T ≫ TBBN):

Increased: Higher expansion rate H(T ∼ TF );
additional non–thermal χ production at T < TF
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WIMPs and Early Universe

Ωχh2 can be changed a lot in non–standard cosmologies
(involving T ≫ TBBN):

Increased: Higher expansion rate H(T ∼ TF );
additional non–thermal χ production at T < TF

Decreased: Reduced expansion rate H(T ∼ TF );
entropy production at T < TF

Determining σ(χχ → SM) allows probe of very early
Universe, once χ has been established to be “the” DM
particle! e.g. MD, Iminniyaz, Kakizaki, arXiv:0704.1590
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High−T Production of DM Particles

Sometimes χ production from thermalized SM particles is
called “thermal production” even if χ never was in thermal
equilibrium:
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High−T Production of DM Particles

Sometimes χ production from thermalized SM particles is
called “thermal production” even if χ never was in thermal
equilibrium:

If σ(χχ → SM) ∝ 1/s: Production maximal at T ≃ mχ

(“freeze–in”, Hall et al., arXiv:0911.1120)

If σ(χχ → SM) ∝ s/Λ4: Produced dominantly at highest
possible temperature, TR.

Either way, χ interactions with SM particles are too weak to
give missing ET signal, unless χ has “partners” that can be
produced via gauge interactions (ex.: gravitino G̃, axino ã)
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Cannot predict missingET from χχ production

Only know total χχ → SM cross section; contribution of
specific final states (e+e−, uū + dd̄) not known
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Cannot predict missingET from χχ production

Only know total χχ → SM cross section; contribution of
specific final states (e+e−, uū + dd̄) not known

Ωχh2 determined from σ(χχ → SM) near threshold
(TF ≃ mχ/20 =⇒ s ≃ 4m2

χ). At colliders need ≥ 3 body
final state to get signature (e.g. e+e− → χχγ, qq̄ → χχg)
=⇒ typically need σ(χχ → SM) at s ∼ 6 to 10m2

χ!
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“Model-independent” approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang,

Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240

Parameterize χ interaction with relevant SM fermion
through dim–6 operator; e.g. for hadron colliders:

Leff = Gχχ̄Γχχq̄Γqq
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Leff = Gχχ̄Γχχq̄Γqq

χ Majorana =⇒ Γχ ∈ {1, γ5, γµγ5}

Γq ∈ {1, γ5, γµ, γµγ5}

If Γχ, Γq ∈ {1, γ5} : Gχ = mq/(2M
3
∗ ) (chirality violating!), else

Γχ = 1/(2M2
∗ ) Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.
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Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang,

Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240

Parameterize χ interaction with relevant SM fermion
through dim–6 operator; e.g. for hadron colliders:

Leff = Gχχ̄Γχχq̄Γqq

χ Majorana =⇒ Γχ ∈ {1, γ5, γµγ5}

Γq ∈ {1, γ5, γµ, γµγ5}

If Γχ, Γq ∈ {1, γ5} : Gχ = mq/(2M
3
∗ ) (chirality violating!), else

Γχ = 1/(2M2
∗ ) Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.

Compute monojet signal from qq̄ → χχg, compare with
monojet limits (current bound) and background (ultimate
reach)!
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Γχ = γµγ5 (corr. to spin-dep. interact.)
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Γχ = 1 (corr. to spin-indep. interact.)
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.

For Γχ = γµγ5 (spin-dep. interact.): LHC bound better
than (comparable to) direct search limit for mχ ≤ (≥) 20

GeV; future reach factor 103 better, if no other BSM
source of missing ET exists.

Γχ = γ5 similar to first case; cannot be probed in direct
WIMP detection (rate ∝ v2

χ)

Bound does not hold if mass of mediator particle
≤ max(mχ, ET/ )!

Altogether: very limited usefulness for most actual WIMP
models.
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2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light (m ≤ few
GeV) (gauge) bosons U :

MeV DM: Suggested as explanation of 511 keV line
(=⇒ slow e+) excess from central region of our galaxy
(Boehm et al., astro-ph/0309686). Should have mχ ≤ 10 MeV (γ
constraints)
=⇒ mχ ≤ mU ≤ 200 MeV to mediate χχ → e+e−; fixes
gUχχgUe+e−/m2

U ! (Unless 2mχ ≃ mU .)
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2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light (m ≤ few
GeV) (gauge) bosons U :

MeV DM: Suggested as explanation of 511 keV line
(=⇒ slow e+) excess from central region of our galaxy
(Boehm et al., astro-ph/0309686). Should have mχ ≤ 10 MeV (γ
constraints)
=⇒ mχ ≤ mU ≤ 200 MeV to mediate χχ → e+e−; fixes
gUχχgUe+e−/m2

U ! (Unless 2mχ ≃ mU .)

PAMELA/FermiLAT inspired TeV DM: Needs light
boson for Sommerfeld enhancement (e.g. Arkani-Hamed et al.,

arXiv:0810.0713(4)) (χχ → UU → 4l is also somewhat less
constrained by γ spectrum than χχ → 2l.)
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DAMA/CoGeNT inspired few GeV DM: Needs light
mediator to achieve sufficiently large σχp. (2 different
mediators for isospin violation to evade bounds: Cline, Frey,

arXiv:1108.1391)
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Light Gauge Bosons (cont’d)

In all cases: U couplings to (most) SM particles must be
≪ 1 to evade bounds! (gµ − 2, meson decays, ν cross
sections, APV, . . . ).
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1-loop effect =⇒ squared Uff̄ coupling is O(α3).
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Light Gauge Bosons (cont’d)

In all cases: U couplings to (most) SM particles must be
≪ 1 to evade bounds! (gµ − 2, meson decays, ν cross
sections, APV, . . . ).

Possible explanation: kinetic mixing with γ/B boson! Is
1-loop effect =⇒ squared Uff̄ coupling is O(α3).

Uχχ coupling may well be large.
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Signatures of light gauge bosons

If mU > 2mχ: U → χχ dominant! Is invisible =⇒ need extra

tag, e.g. e+e− → γU → γ+ nothing.
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Signatures of light gauge bosons

If mU > 2mχ: U → χχ dominant! Is invisible =⇒ need extra

tag, e.g. e+e− → γU → γ+ nothing.

Physics background ∝ s =⇒ lower energy is better!
Borodatchenkova, Choudhury, MD, hep-ph/0510147

Instrumental backgrounds (not from e+e− annihilation)
seem large
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Sensitivity at B−factories (100 fb−1)
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Red, black: Regions allowed by Ωχ, σ(χχ → e+e−).
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Signatures of light gauge bosons (cont.d)

If mU < 2mχ: U → ℓ+ℓ−
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Signatures of light gauge bosons (cont.d)

If mU < 2mχ: U → ℓ+ℓ−

Sufficiently light U can even be produced in fixed–target
experiments: e−N → e−e+e−N (tridents), with peak in
Me+e−

First exptl. results from MAMI A1 arXiv:1101.4091 and JLAB
APEX arXiv:1108.2750 Excludes new mass ranges around 200
to 300 MeV for A′ ≡ U kinetically mixed with photon.

Also, KLOE-2 performed search, mostly for φ → Uη: no
signal. arXiv:1107.2531
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A1 and APEX results
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3 SUSY DM and LHC “Inverse Problem”

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
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3 SUSY DM and LHC “Inverse Problem”

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

Stabilizes hierarchy m2
Higgs ≪ M2

Planck

Allows unification of gauge couplings

In scenarios with unified Higgs masses: EWSB requires
sizable hierarchy! (Not in NUHM2.)

HLS theorem, relation to superstrings: don’t single out weak
scale.
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Features of SUSY

Need superpartner for each SM particle: Same rep. of gauge

group, spin differs by 1/2
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Features of SUSY

Need superpartner for each SM particle: Same rep. of gauge

group, spin differs by 1/2

Need at least 2 Higgs doublets (anomalies, mt · mb 6= 0)

SUSY implies equal masses for partners =⇒ SUSY must be

broken

Naturalness: sparticle masses should be at weak scale (strictly

true only for 3rd generation, elw gauginos)

In simplest, R−parity invariant scenario: lightest superparticle

LSP is stable: satisfies one condition for DM candidate!
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SUSY DM candidate: sneutrinoν̃

Disfavored theoretically: not LSP in constrained models
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SUSY DM candidate: sneutrinoν̃

Disfavored theoretically: not LSP in constrained models

Excluded experimentally by direct searches
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SUSY DM candidate: neutralino χ̃0
1

Mixture of B̃, W̃3, h̃0
u, h̃0

d
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In “most” of parameter space: χ̃0
1 ≃ B̃, and predicted

Ωχ̃0
1
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SUSY DM candidate: neutralino χ̃0
1

Mixture of B̃, W̃3, h̃0
u, h̃0

d

In constrained models: often is lightest sparticle in
visible sector! (Other possibility: lightest stau τ̃1)

In “most” of parameter space: χ̃0
1 ≃ B̃, and predicted

Ωχ̃0
1
h2 too large! O(1 to 10) rather than O(0.1) in

standard cosmology,

but DM–allowed regions of parameter space do exist
even in constrained models!
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Regions with correctΩχ̃0

1
h2

Co–annihilation region: mχ̃0
1
≃ mτ̃1
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Co–annihilation region: mχ̃0
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≃ mτ̃1

Higgs funnel(s): mχ̃0
1
≃ mh/2, mA/2

Well–tempered neutralino: µ − M1 ≤ MZ =⇒ χ̃0
1 is

B̃ − h̃0 mixture. (Requires mq̃ ≫ mg̃ in cMSSM; can be
arranged “anywhere” in NUHM.)
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Regions with correctΩχ̃0

1
h2

Co–annihilation region: mχ̃0
1
≃ mτ̃1

Higgs funnel(s): mχ̃0
1
≃ mh/2, mA/2

Well–tempered neutralino: µ − M1 ≤ MZ =⇒ χ̃0
1 is

B̃ − h̃0 mixture. (Requires mq̃ ≫ mg̃ in cMSSM; can be
arranged “anywhere” in NUHM.)

Note: DM–allowed region of (m0,m1/2) plane of cMSSM
depends on A0, tan β!
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Impact of LHC searches

Is model dependent: Only probe g̃, q̃ sector so far! Here:
Assume cMSSM for defineteness.
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Impact of LHC searches

Is model dependent: Only probe g̃, q̃ sector so far! Here:
Assume cMSSM for defineteness.

Well–tempered neutralino, A−pole need large mq̃: limits
still fairly weak: mg̃,min increased from ∼ 400 GeV to
∼ 550 GeV

τ̃1 co–annihilation requires mq̃ ≤ mg̃: good for LHC
searches; still plenty of allowed region left.
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Impact of Indirect DM Searches

No halo signal in co–annihilation region; ν from Sun
small
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Impact of Indirect DM Searches

No halo signal in co–annihilation region; ν from Sun
small

Signals very small in A−funnel

Well-tempered neutralino most promising, especially ν
from Sun, but present limits not constraining
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Impact of direct WIMP Searches

XENON, CDMS⊕EDELWEISS begin to probe
well–tempered neutralino
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Impact of direct WIMP Searches

XENON, CDMS⊕EDELWEISS begin to probe
well–tempered neutralino

Signals in other regions very small
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Impact of Future WIMP Discovery at Collider

Generically: could determine:

WIMP mass: Very useful for indirect searches (greatly
reduced “look elsewhere” problem); less so for direct
searches, once mχ ≥ mN
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Impact of Future WIMP Discovery at Collider

Generically: could determine:

WIMP mass: Very useful for indirect searches (greatly
reduced “look elsewhere” problem); less so for direct
searches, once mχ ≥ mN

WIMP couplings: Determine cross sections and final
states in indirect searches; determine cross sections in
direct searches

Most interesting to me: Predict Ωχh2, compare with
observation: Constrain very early universe!
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Fitting SUSY parameters at LHC (“inverse problem”)

Feasibility (resulting errors) very strongly depend on where
we are in parameter space!
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Fitting SUSY parameters at LHC (“inverse problem”)

Feasibility (resulting errors) very strongly depend on where
we are in parameter space!

Good: Low sparticle masses, many leptons e, µ in final
states.

Not so good: Large masses, mostly hadronic final
states.

Two approaches: Case studies, broad scans of parameter
space
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Case study:τ̃1 co–annihilation region in cMSSM
Arnowitt et al., arXiv:0802.2968

Needs mτ̃1
− mχ̃0

1
≤ 15 GeV

=⇒ χ̃0
2 → τ̃1τ, χ̃±

1 → τ̃±1 ντ have nearly unit branching
ratio
=⇒ no di–lepton edges!
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1 → τ̃±1 ντ have nearly unit branching
ratio
=⇒ no di–lepton edges!

τ̃1 → χ̃0
1τ gives rather soft τ : Difficult to detect!

Study three classes of final states:
(i) 2τ + 2j + ET/
(ii)4 non − b j + ET/
(iii) leading b + 3j + ET/
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Case study:τ̃1 co–annihilation region in cMSSM
Arnowitt et al., arXiv:0802.2968

Needs mτ̃1
− mχ̃0

1
≤ 15 GeV

=⇒ χ̃0
2 → τ̃1τ, χ̃±

1 → τ̃±1 ντ have nearly unit branching
ratio
=⇒ no di–lepton edges!

τ̃1 → χ̃0
1τ gives rather soft τ : Difficult to detect!

Study three classes of final states:
(i) 2τ + 2j + ET/
(ii)4 non − b j + ET/
(iii) leading b + 3j + ET/

Fit many kinematical distributions simultaneously,
including slope of softer pτ

T spectrum in sample (i) =⇒

predict Ωχ̃0
1
h2 to 10%!
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Result of fit

M (GeV)∆
8 9 10 11 12 13

0.08

0.09

0.1

0.11

0.12
Ω

~ χ
2 h 10
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Result of fit

M (GeV)∆
8 9 10 11 12 13

0.08

0.09

0.1

0.11

0.12
Ω

~ χ
2 h 10

Unfortunately, chosen benchmark point (mg̃ = 830 GeV,
mq̃ ≃ 750 GeV) is most likely excluded!
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Scan of Parameter Space
Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM
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Fix mA = 850 GeV, A3 = 800 GeV
Randomly choose mq̃,g̃ ∈ [600, 1000] GeV,
other masses ∈ [100, 1000] GeV, tan β ∈ [2, 50]
Consider 1808 observables, both counting rates and binned
distributions
Introduce “χ2−like” variable

(∆SAB)2 =
1

nsig
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Only “significant” signatures included
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Only “significant” signatures included
Allow 1% syst. error (15% on total signal rate), 10 fb−1 of
14 TeV data, no background
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Scan of Parameter Space
Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM
Fix mA = 850 GeV, A3 = 800 GeV
Randomly choose mq̃,g̃ ∈ [600, 1000] GeV,
other masses ∈ [100, 1000] GeV, tan β ∈ [2, 50]
Consider 1808 observables, both counting rates and binned
distributions
Introduce “χ2−like” variable

(∆SAB)2 =
1

nsig

nsig∑

i=1

(
sA
i − sB

i

σAB
i

)2

Only “significant” signatures included
Allow 1% syst. error (15% on total signal rate), 10 fb−1 of
14 TeV data, no background
MC: (∆SAB)2 > 0.285 =⇒ models differ at > 95% c.l.
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Results and Remarks

Found 283 degenerate pairs, with (δSAB)2 < 0.285, for
43,026 “models” (i.e., sets of parameters)
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Note

Their observables are correlated
=⇒ (δSAB)2 is no true χ2

=⇒ need MC to intepret it, from comparing runs with
different random no. seed: is this reliable estimator for
comparing different parameter sets?
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Results and Remarks

Found 283 degenerate pairs, with (δSAB)2 < 0.285, for
43,026 “models” (i.e., sets of parameters)
Note

Their observables are correlated
=⇒ (δSAB)2 is no true χ2

=⇒ need MC to intepret it, from comparing runs with
different random no. seed: is this reliable estimator for
comparing different parameter sets?

Statistics looks weird! Comparing two simulations of
same “model”, get 611 (out of 2600) cases where some
2ℓ observable has > 5σ discrepancy: way too many!
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Simpler approach

Bornhauser and MD, in progress

Define 12 disjunct event classes, depending on no.,
charge, flavor of leptons
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Simpler approach

Bornhauser and MD, in progress

Define 12 disjunct event classes, depending on no.,
charge, flavor of leptons

Consider 7 mostly uncorrelated observables for each
class: No. of events; 〈nτ±〉; 〈nb〉; 〈nj〉; 〈n2

j〉; 〈HT 〉

Define proper χ2, incl. corr. between 〈nj〉, 〈n2
j〉, only

including significant observables: test with MC.
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Results of simpler approach

W/o syst. error: only one of 283 “degenerate” pairs has
p > 0.05, and two parameter sets really are very similar!
(Except for heavy sleptons.)
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Results of simpler approach

W/o syst. error: only one of 283 “degenerate” pairs has
p > 0.05, and two parameter sets really are very similar!
(Except for heavy sleptons.)

Introducing syst. errors as Arkani-Hamed et al.: 45 out
of 283 pairs have p > 0.05; still are pretty similar
physically

Introducing SM background, but no syst. error: 10 pairs
have p > 0.05

DM and Colliders – p. 34/36



4 Impact of Higgs Searches

In many WIMP models, Higgs exch. dominates χp

scattering, in which case σχp ∝ 1/m4
H : crucial to know

Higgs mass!
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In SUSY at large tan β: σχ̃0
1p

∝ tan2 β/m4
A: need info on

heavy Higgses!

TeVatron and CMS searches for H,A → τ+τ−

significantly increase lower bound on DM–allowed χ̃0
1 in

general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338);
exclude scenarios with very large σχ̃0
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4 Impact of Higgs Searches

In many WIMP models, Higgs exch. dominates χp

scattering, in which case σχp ∝ 1/m4
H : crucial to know

Higgs mass!

In SUSY at large tan β: σχ̃0
1p

∝ tan2 β/m4
A: need info on

heavy Higgses!

TeVatron and CMS searches for H,A → τ+τ−

significantly increase lower bound on DM–allowed χ̃0
1 in

general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338);
exclude scenarios with very large σχ̃0

1p
.

Higgs searches can also be used to distinguish
between WIMP models and to help determine
parameters. E.g. mh in MSSM constrains stop sector.
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Summary

Well–motivated WIMP models can be tested at
colliders!
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Summary

Well–motivated WIMP models can be tested at
colliders!

Scenarios with new light gauge bosons with
suppressed couplings to SM fermions are now being
probed at low−E colliders, fixed–target expts.

LHC not very good for “model–independent” WIMP
search. (Signal is O(α2αS), background is O(ααS).)

If WIMP signal is found at LHC, LHC experiments will
be better at extracting parameters than indicated by
theory analyses that have been published so far; many
avenues remain to be explored.

Higgs sector also very important for WIMP physics!

DM and Colliders – p. 36/36
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