The Dark Matter – Collider Connection

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

1 Generalities: WIMP DM Production and Missing E_T

1 Generalities: WIMP DM Production and Missing E_T 2 Light Gauge Bosons

Contents

- 1 Generalities: WIMP DM Production and Missing E_T
- 2 Light Gauge Bosons
- 3 SUSY DM and the "LHC Inverse Problem"

Contents

- 1 Generalities: WIMP DM Production and Missing E_T
- 2 Light Gauge Bosons
- 3 SUSY DM and the "LHC Inverse Problem"
- 4 Higgs Searches and Direct DM Detection

Contents

- 1 Generalities: WIMP DM Production and Missing E_T
- 2 Light Gauge Bosons
- 3 SUSY DM and the "LHC Inverse Problem"
- 4 Higgs Searches and Direct DM Detection
- 5 Summary

Requirements for a good DM candidate:

• Must have lifetime $\gg \tau_U$

Requirements for a good DM candidate:

- Must have lifetime $\gg \tau_U$
- Must be electrically neutral (otherwise not dark)

Requirements for a good DM candidate:

- Must have lifetime $\gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_{\rm DM} \simeq 0.22$

Requirements for a good DM candidate:

- Must have lifetime $\gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_{\rm DM} \simeq 0.22$

If DM consists of thermally produced "elementary" particles: Leads to events with missing E_T at colliders!

Requirements for a good DM candidate:

- Must have lifetime $\gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_{\rm DM} \simeq 0.22$

If DM consists of thermally produced "elementary" particles: Leads to events with missing E_T at colliders!

Counter-examples: axions; dark atoms; primordial black holes; keV neutrinos: not covered in this talk. Note: Proves that LHC does not "recreate conditions of the early universe"!

• Assume χ was in full thermal equilibrium with SM particles at sufficiently temperature T:

 χ production rate $n_{\chi} \langle \sigma(\chi \chi \to SM) v_{\chi} \rangle > \text{expansion rate } H$

• Assume χ was in full thermal equilibrium with SM particles at sufficiently temperature T:

 χ production rate $n_{\chi} \langle \sigma(\chi \chi \to SM) v_{\chi} \rangle > expansion rate H$

• $n_{\chi} \propto e^{-m_{\chi}/T}, \ \langle \sigma(\chi\chi \to SM)v \rangle \propto T^{0 \text{ or}2}, \ H \propto T^2/M_{\text{Planck}}$

• Assume χ was in full thermal equilibrium with SM particles at sufficiently temperature T:

 χ production rate $n_{\chi} \langle \sigma(\chi \chi \to SM) v_{\chi} \rangle > expansion rate H$

• $n_{\chi} \propto e^{-m_{\chi}/T}, \ \langle \sigma(\chi\chi \to SM)v \rangle \propto T^{0 \text{ or}2}, \ H \propto T^2/M_{\text{Planck}}$

• \Rightarrow equality ("freeze-out") reached at $T_F \simeq m_{\chi}/20$

• Assume χ was in full thermal equilibrium with SM particles at sufficiently temperature T:

 χ production rate $n_{\chi} \langle \sigma(\chi \chi \to SM) v_{\chi} \rangle > expansion rate H$

• $n_{\chi} \propto e^{-m_{\chi}/T}$, $\langle \sigma(\chi \chi \to SM) v \rangle \propto T^{0 \text{ or}2}$, $H \propto T^2/M_{\text{Planck}}$ • \Rightarrow equality ("freeze-out") reached at $T_F \simeq m_{\chi}/20$

$$\implies \Omega_{\chi} h^2 \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma(\chi \chi \to \text{SM}) v \rangle}$$

• Assume χ was in full thermal equilibrium with SM particles at sufficiently temperature T:

 χ production rate $n_{\chi} \langle \sigma(\chi \chi \to SM) v_{\chi} \rangle > expansion rate H$

• $n_{\chi} \propto e^{-m_{\chi}/T}, \ \langle \sigma(\chi\chi \to SM)v \rangle \propto T^{0 \text{ or}2}, \ H \propto T^2/M_{\text{Planck}}$

• \Rightarrow equality ("freeze-out") reached at $T_F \simeq m_{\chi}/20$

$$\implies \Omega_{\chi} h^2 \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma(\chi \chi \to \text{SM}) v \rangle}$$

Indicates weak-scale $\chi\chi$ annihilation cross section! ("WIMP miracle")

WIMPs and Early Universe

 $\Omega_{\chi}h^2$ can be changed a lot in non-standard cosmologies (involving $T \gg T_{\rm BBN}$):

Increased: Higher expansion rate $H(T ∼ T_F)$;
 additional non–thermal χ production at $T < T_F$

WIMPs and Early Universe

 $\Omega_{\chi}h^2$ can be changed a lot in non-standard cosmologies (involving $T \gg T_{\rm BBN}$):

- Increased: Higher expansion rate $H(T ∼ T_F)$;
 additional non–thermal χ production at $T < T_F$
- <u>Decreased</u>: Reduced expansion rate $H(T \sim T_F)$; entropy production at $T < T_F$

WIMPs and Early Universe

 $\Omega_{\chi}h^2$ can be changed a lot in non-standard cosmologies (involving $T \gg T_{\rm BBN}$):

- Increased: Higher expansion rate $H(T \sim T_F)$; additional non-thermal χ production at $T < T_F$
- <u>Decreased</u>: Reduced expansion rate $H(T \sim T_F)$; entropy production at $T < T_F$

Determining $\sigma(\chi\chi \to SM)$ allows probe of very early Universe, once χ has been established to be "the" DM particle! e.g. MD, Iminniyaz, Kakizaki, arXiv:0704.1590

Sometimes χ production from thermalized SM particles is called "thermal production" even if χ never was in thermal equilibrium:

Sometimes χ production from thermalized SM particles is called "thermal production" even if χ never was in thermal equilibrium:

• If $\sigma(\chi\chi \to SM) \propto 1/s$: Production maximal at $T \simeq m_{\chi}$ ("freeze-in", Hall et al., arXiv:0911.1120)

Sometimes χ production from thermalized SM particles is called "thermal production" even if χ never was in thermal equilibrium:

- If $\sigma(\chi\chi \to SM) \propto 1/s$: Production maximal at $T \simeq m_{\chi}$ ("freeze-in", Hall et al., arXiv:0911.1120)
- If $\sigma(\chi\chi \to SM) \propto s/\Lambda^4$: Produced dominantly at highest possible temperature, T_R .

Sometimes χ production from thermalized SM particles is called "thermal production" even if χ never was in thermal equilibrium:

- If $\sigma(\chi\chi \to SM) \propto 1/s$: Production maximal at $T \simeq m_{\chi}$ ("freeze-in", Hall et al., arXiv:0911.1120)
- If $\sigma(\chi\chi \to SM) \propto s/\Lambda^4$: Produced dominantly at highest possible temperature, T_R .

Either way, χ interactions with SM particles are too weak to give missing E_T signal, unless χ has "partners" that can be produced via gauge interactions (ex.: gravitino \tilde{G} , axino \tilde{a})

Cannot predict missing E_T from $\chi\chi$ production

• Only know *total* $\chi\chi \to SM$ cross section; contribution of specific final states (e^+e^- , $u\bar{u} + d\bar{d}$) not known

Cannot predict missing E_T from $\chi\chi$ production

- Only know *total* $\chi\chi \to SM$ cross section; contribution of specific final states (e^+e^- , $u\bar{u} + d\bar{d}$) not known
- $\Omega_{\chi}h^2$ determined from $\sigma(\chi\chi \to SM)$ near threshold $(T_F \simeq m_{\chi}/20 \Longrightarrow s \simeq 4m_{\chi}^2)$. At colliders need ≥ 3 body final state to get signature (e.g. $e^+e^- \to \chi\chi\gamma, \ q\bar{q} \to \chi\chi g$) \Longrightarrow typically need $\sigma(\chi\chi \to SM)$ at $s \sim 6$ to $10m_{\chi}^2$!

"Model-independent" approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang, Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240 Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

 $\mathcal{L}_{\text{eff}} = G_{\chi} \bar{\chi} \Gamma_{\chi} \chi \bar{q} \Gamma_{q} q$

"Model-independent" approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang, Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240 Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

$$\mathcal{L}_{\text{eff}} = G_{\chi} \bar{\chi} \Gamma_{\chi} \chi \bar{q} \Gamma_{q} q$$

$$\begin{split} \chi \text{ Majorana} &\Longrightarrow \Gamma_{\chi} \in \{1, \gamma_5, \gamma_{\mu} \gamma_5\} \\ \Gamma_q \in \{1, \gamma_5, \gamma_{\mu}, \gamma_{\mu} \gamma_5\} \\ \text{ If } \Gamma_{\chi}, \Gamma_q \in \{1, \gamma_5\} : \ G_{\chi} = m_q / (2M_*^3) \text{ (chirality violating!), else} \\ \Gamma_{\chi} &= 1 / (2M_*^2) \text{ Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.} \end{split}$$

"Model-independent" approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang, Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240 Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

$$\mathcal{L}_{\text{eff}} = G_{\chi} \bar{\chi} \Gamma_{\chi} \chi \bar{q} \Gamma_{q} q$$

 χ Majorana $\Longrightarrow \Gamma_{\chi} \in \{1, \gamma_5, \gamma_{\mu}\gamma_5\}$

 $\Gamma_q \in \{1, \gamma_5, \gamma_\mu, \gamma_\mu\gamma_5\}$

If Γ_{χ} , $\Gamma_q \in \{1, \gamma_5\}$: $G_{\chi} = m_q/(2M_*^3)$ (chirality violating!), else $\Gamma_{\chi} = 1/(2M_*^2)$ Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.

Compute monojet signal from $q\bar{q} \rightarrow \chi \chi g$, compare with monojet limits (current bound) and background (ultimate reach)!

 $\Gamma_{\chi} = \gamma_{\mu}\gamma_5$ (corr. to spin-dep. interact.)

 $\Gamma_{\chi} = 1$ (corr. to spin-indep. interact.)

• For $\Gamma_{\chi} = 1$ (spin-indep. interact.): Current bound poor; ultimate LHC reach interesting only for $m_{\chi} \leq 5$ GeV.

- For $\Gamma_{\chi} = 1$ (spin-indep. interact.): Current bound poor; ultimate LHC reach interesting only for $m_{\chi} \leq 5$ GeV.
- For $\Gamma_{\chi} = \gamma_{\mu}\gamma_{5}$ (spin-dep. interact.): LHC bound better than (comparable to) direct search limit for $m_{\chi} \leq (\geq) 20$ GeV; future reach factor 10^{3} better, if no other BSM source of missing E_{T} exists.

- For $\Gamma_{\chi} = 1$ (spin-indep. interact.): Current bound poor; ultimate LHC reach interesting only for $m_{\chi} \leq 5$ GeV.
- For $\Gamma_{\chi} = \gamma_{\mu}\gamma_5$ (spin-dep. interact.): LHC bound better than (comparable to) direct search limit for $m_{\chi} \leq (\geq) 20$ GeV; future reach factor 10^3 better, if no other BSM source of missing E_T exists.
- $\Gamma_{\chi} = \gamma_5$ similar to first case; cannot be probed in direct WIMP detection (rate $\propto v_{\chi}^2$)

- For $\Gamma_{\chi} = 1$ (spin-indep. interact.): Current bound poor; ultimate LHC reach interesting only for $m_{\chi} \le 5$ GeV.
- For $\Gamma_{\chi} = \gamma_{\mu}\gamma_{5}$ (spin-dep. interact.): LHC bound better than (comparable to) direct search limit for $m_{\chi} \leq (\geq) 20$ GeV; future reach factor 10^{3} better, if no other BSM source of missing E_{T} exists.
- $\Gamma_{\chi} = \gamma_5$ similar to first case; cannot be probed in direct WIMP detection (rate $\propto v_{\chi}^2$)
- Bound does *not* hold if mass of mediator particle $\leq \max(m_{\chi}, \not\!\!\!E_T)!$

- For $\Gamma_{\chi} = 1$ (spin-indep. interact.): Current bound poor; ultimate LHC reach interesting only for $m_{\chi} \le 5$ GeV.
- For $\Gamma_{\chi} = \gamma_{\mu}\gamma_{5}$ (spin-dep. interact.): LHC bound better than (comparable to) direct search limit for $m_{\chi} \leq (\geq) 20$ GeV; future reach factor 10^{3} better, if no other BSM source of missing E_{T} exists.
- $\Gamma_{\chi} = \gamma_5$ similar to first case; cannot be probed in direct WIMP detection (rate $\propto v_{\chi}^2$)
- Bound does *not* hold if mass of mediator particle $\leq \max(m_{\chi}, \not\!\!\!E_T)!$

Altogether: very limited usefulness for most actual WIMP models.

2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light ($m \le$ few GeV) (gauge) bosons U:

• <u>MeV DM</u>: Suggested as explanation of 511 keV line (\Rightarrow slow e^+) excess from central region of our galaxy (Boehm et al., astro-ph/0309686). Should have $m_{\chi} \leq 10$ MeV (γ constraints)

 $\implies m_{\chi} \le m_U \le 200 \text{ MeV to mediate } \chi\chi \to e^+e^-$; fixes $g_{U\chi\chi}g_{Ue^+e^-}/m_U^2!$ (Unless $2m_{\chi} \simeq m_U$.)
2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light ($m \le$ few GeV) (gauge) bosons U:

• <u>MeV DM</u>: Suggested as explanation of 511 keV line (\Rightarrow slow e^+) excess from central region of our galaxy (Boehm et al., astro-ph/0309686). Should have $m_{\chi} \leq 10$ MeV (γ constraints)

 $\implies m_{\chi} \le m_U \le 200$ MeV to mediate $\chi \chi \to e^+ e^-$; fixes $g_{U\chi\chi}g_{Ue^+e^-}/m_U^2!$ (Unless $2m_{\chi} \simeq m_U$.)

• PAMELA/FermiLAT inspired TeV DM: Needs light boson for Sommerfeld enhancement (e.g. Arkani-Hamed et al., arXiv:0810.0713(4)) ($\chi\chi \rightarrow UU \rightarrow 4l$ is also somewhat less constrained by γ spectrum than $\chi\chi \rightarrow 2l$.)

• DAMA/CoGeNT inspired few GeV DM: Needs light mediator to achieve sufficiently large $\sigma_{\chi p}$. (2 different mediators for isospin violation to evade bounds: Cline, Frey, arXiv:1108.1391)

Light Gauge Bosons (cont'd)

In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_{\mu} - 2$, meson decays, ν cross sections, APV, ...).

Light Gauge Bosons (cont'd)

In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_{\mu} - 2$, meson decays, ν cross sections, APV, ...).

Possible explanation: kinetic mixing with γ/B boson! Is 1-loop effect \implies squared $Uf\bar{f}$ coupling is $\mathcal{O}(\alpha^3)$.

Light Gauge Bosons (cont'd)

In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_{\mu} - 2$, meson decays, ν cross sections, APV, ...).

Possible explanation: kinetic mixing with γ/B boson! Is 1-loop effect \implies squared $Uf\bar{f}$ coupling is $\mathcal{O}(\alpha^3)$.

 $U\chi\chi$ coupling may well be large.

Signatures of light gauge bosons

 $\frac{\text{If } m_U > 2m_{\chi}:}{\text{tag, e.g. } e^+e^- \to \gamma U \to \gamma + \text{ nothing.}} \text{ Is invisible} \Longrightarrow \text{need extra}$

Signatures of light gauge bosons

If $m_U > 2m_{\chi}$: $U \to \chi \chi$ dominant! Is invisible \Longrightarrow need extra tag, e.g. $e^+e^- \to \gamma U \to \gamma +$ nothing.

Physics background $\propto s \implies$ lower energy is better!
Borodatchenkova, Choudhury, MD, hep-ph/0510147

Signatures of light gauge bosons

If $m_U > 2m_{\chi}$: $U \to \chi \chi$ dominant! Is invisible \Longrightarrow need extra tag, e.g. $e^+e^- \to \gamma U \to \gamma +$ nothing.

- Physics background $\propto s \implies$ lower energy is better!
 Borodatchenkova, Choudhury, MD, hep-ph/0510147
- Instrumental backgrounds (not from e^+e^- annihilation) seem large

Sensitivity at B-factories (100 fb⁻¹)

If $m_U < 2m_\chi$: $U \to \ell^+ \ell^-$

If
$$m_U < 2m_\chi$$
: $U \to \ell^+ \ell^-$

Sufficiently light U can even be produced in fixed-target experiments: $e^-N \rightarrow e^-e^+e^-N$ (tridents), with peak in $M_{e^+e^-}$

If
$$m_U < 2m_\chi$$
: $U \to \ell^+ \ell^-$

Sufficiently light *U* can even be produced in fixed-target experiments: $e^-N \rightarrow e^-e^+e^-N$ (tridents), with peak in $M_{e^+e^-}$

First exptl. results from MAMI A1 arXiv:1101.4091 and JLAB APEX arXiv:1108.2750 Excludes new mass ranges around 200 to 300 MeV for $A' \equiv U$ kinetically mixed with photon.

If
$$m_U < 2m_\chi$$
: $U \to \ell^+ \ell^-$

Sufficiently light *U* can even be produced in fixed-target experiments: $e^-N \rightarrow e^-e^+e^-N$ (tridents), with peak in $M_{e^+e^-}$

First exptl. results from MAMI A1 arXiv:1101.4091 and JLAB APEX arXiv:1108.2750 Excludes new mass ranges around 200 to 300 MeV for $A' \equiv U$ kinetically mixed with photon.

Also, KLOE-2 performed search, mostly for $\phi \rightarrow U\eta$: no signal. arXiv:1107.2531

A1 and APEX results

Saw above: WIMP searches at colliders not promising, *if* WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of *many* new particles! True in SUSY. (Also in Little Higgs.)

Saw above: WIMP searches at colliders not promising, *if* WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of *many* new particles! True in SUSY. (Also in Little Higgs.) Recall: Primary motivation for SUSY *not* related to DM!

• Stabilizes hierarchy $m_{\rm Higgs}^2 \ll M_{\rm Planck}^2$

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
- Allows unification of gauge couplings

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
- Allows unification of gauge couplings
- In scenarios with unified Higgs masses: EWSB requires sizable hierarchy! (Not in NUHM2.)

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
- Allows unification of gauge couplings
- In scenarios with unified Higgs masses: EWSB requires sizable hierarchy! (Not in NUHM2.)
- HLS theorem, relation to superstrings: don't single out weak scale.

Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners broken

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners broken
- Naturalness: sparticle masses should be at weak scale (strictly true only for 3rd generation, elw gauginos)

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners broken
- Naturalness: sparticle masses should be at weak scale (strictly true only for 3rd generation, elw gauginos)
- In simplest, *R*-parity invariant scenario: lightest superparticle LSP is stable: satisfies one condition for DM candidate!

SUSY DM candidate: sneutrino $\tilde{\nu}$

Disfavored theoretically: not LSP in constrained models

SUSY DM candidate: sneutrino $\tilde{\nu}$

- Disfavored theoretically: not LSP in constrained models
- Excluded experimentally by direct searches

• Mixture of \tilde{B} , \widetilde{W}_3 , \tilde{h}_u^0 , \tilde{h}_d^0

In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)

- Mixture of \tilde{B} , \widetilde{W}_3 , \tilde{h}_u^0 , \tilde{h}_d^0
- In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)
- In "most" of parameter space: $\tilde{\chi}_1^0 \simeq \tilde{B}$, and predicted $\Omega_{\tilde{\chi}_1^0} h^2$ too large! $\mathcal{O}(1 \text{ to } 10)$ rather than $\mathcal{O}(0.1)$ in standard cosmology,

- Mixture of \tilde{B} , \widetilde{W}_3 , \tilde{h}_u^0 , \tilde{h}_d^0
- In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)
- In "most" of parameter space: $\tilde{\chi}_1^0 \simeq \tilde{B}$, and predicted $\Omega_{\tilde{\chi}_1^0} h^2$ too large! $\mathcal{O}(1 \text{ to } 10)$ rather than $\mathcal{O}(0.1)$ in standard cosmology,
- but DM-allowed regions of parameter space do exist even in constrained models!

• Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, \ m_A/2$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, \ m_A/2$
- Well-tempered neutralino: $\mu M_1 \leq M_Z \Longrightarrow \tilde{\chi}_1^0$ is $\tilde{B} \tilde{h}^0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged "anywhere" in NUHM.)

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, \ m_A/2$
- Well-tempered neutralino: $\mu M_1 \le M_Z \Longrightarrow \tilde{\chi}_1^0$ is $\tilde{B} \tilde{h}^0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged "anywhere" in NUHM.)
- Note: DM-allowed region of $(m_0, m_{1/2})$ plane of cMSSM depends on $A_0, \tan \beta!$

Impact of LHC searches

Is model dependent: Only probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for defineteness.
Impact of LHC searches

Is model dependent: Only probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for defineteness.

• Well-tempered neutralino, A-pole need large $m_{\tilde{q}}$: limits still fairly weak: $m_{\tilde{g},\min}$ increased from ~ 400 GeV to ~ 550 GeV

Impact of LHC searches

Is model dependent: Only probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for defineteness.

- Well-tempered neutralino, A-pole need large $m_{\tilde{q}}$: limits still fairly weak: $m_{\tilde{g},\min}$ increased from ~ 400 GeV to ~ 550 GeV
- $\tilde{\tau}_1$ co–annihilation requires $m_{\tilde{q}} \leq m_{\tilde{g}}$: good for LHC searches; still plenty of allowed region left.

Impact of Indirect DM Searches

No halo signal in co–annihilation region; ν from Sun small

Impact of Indirect DM Searches

- No halo signal in co–annihilation region; v from Sun small
- Signals very small in A-funnel

Impact of Indirect DM Searches

- No halo signal in co–annihilation region; ν from Sun small
- Signals very small in A-funnel
- Well-tempered neutralino most promising, especially ν from Sun, but present limits not constraining

Impact of direct WIMP Searches

 XENON, CDMS⊕EDELWEISS begin to probe well-tempered neutralino

Impact of direct WIMP Searches

- XENON, CDMS⊕EDELWEISS begin to probe well-tempered neutralino
- Signals in other regions very small

Impact of Future WIMP Discovery at Collider

Generically: could determine:

✓ WIMP mass: Very useful for indirect searches (greatly reduced "look elsewhere" problem); less so for direct searches, once $m_{\chi} \ge m_N$

Impact of Future WIMP Discovery at Collider

Generically: could determine:

- ✓ WIMP mass: Very useful for indirect searches (greatly reduced "look elsewhere" problem); less so for direct searches, once $m_{\chi} \ge m_N$
- WIMP couplings: Determine cross sections and final states in indirect searches; determine cross sections in direct searches

Impact of Future WIMP Discovery at Collider

Generically: could determine:

- ✓ WIMP mass: Very useful for indirect searches (greatly reduced "look elsewhere" problem); less so for direct searches, once $m_{\chi} \ge m_N$
- WIMP couplings: Determine cross sections and final states in indirect searches; determine cross sections in direct searches
- Most interesting to me: Predict $\Omega_{\chi}h^2$, compare with observation: Constrain very early universe!

Feasibility (resulting errors) *very strongly* depend on where we are in parameter space!

Feasibility (resulting errors) *very strongly* depend on where we are in parameter space!

Good: Low sparticle masses, many leptons e, μ in final states.

Feasibility (resulting errors) *very strongly* depend on where we are in parameter space!

- Good: Low sparticle masses, many leptons e, μ in final states.
- Not so good: Large masses, mostly hadronic final states.

Feasibility (resulting errors) *very strongly* depend on where we are in parameter space!

- Good: Low sparticle masses, many leptons e, μ in final states.
- Not so good: Large masses, mostly hadronic final states.

Two approaches: Case studies, broad scans of parameter space

Arnowitt et al., arXiv:0802.2968

• Needs
$$m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} \leq 15 \text{ GeV}$$

 $\implies \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau, \ \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}_1^{\pm} \nu_{\tau}$ have nearly unit branching ratio

 \implies no di–lepton edges!

Arnowitt et al., arXiv:0802.2968

• Needs
$$m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} \leq 15 \text{ GeV}$$

 $\implies \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau, \ \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}_1^{\pm} \nu_{\tau}$ have nearly unit branching ratio

 \implies no di–lepton edges!

• $\tilde{\tau}_1 \rightarrow \tilde{\chi}_1^0 \tau$ gives rather soft τ : Difficult to detect!

Arnowitt et al., arXiv:0802.2968

Needs
$$m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} \leq 15 \text{ GeV}$$

$$\implies \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau, \ \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}_1^{\pm} \nu_{\tau} \text{ have nearly unit branching ratio}$$

 \implies no di–lepton edges!

- $\tilde{\tau}_1 \rightarrow \tilde{\chi}_1^0 \tau$ gives rather soft τ : Difficult to detect!
- Study three classes of final states:

(i) $2\tau + 2j + \not\!\!\!E_T$ (ii) $4 \operatorname{non} - b j + \not\!\!\!\!E_T$ (iii) leading $b + 3j + \not\!\!\!\!E_T$

Arnowitt et al., arXiv:0802.2968

Needs
$$m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} \leq 15 \text{ GeV}$$

$$\implies \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau, \ \tilde{\chi}_1^{\pm} \rightarrow \tilde{\tau}_1^{\pm} \nu_{\tau} \text{ have nearly unit branching ratio}$$

 \implies no di–lepton edges!

- $\tilde{\tau}_1 \rightarrow \tilde{\chi}_1^0 \tau$ gives rather soft τ : Difficult to detect!
- Study three classes of final states:

(i) $2\tau + 2j + \not\!\!\!E_T$ (ii) $4 \operatorname{non} - b j + \not\!\!\!\!E_T$ (iii) leading $b + 3j + \not\!\!\!\!E_T$

• Fit many kinematical distributions simultaneously, including slope of softer p_T^{τ} spectrum in sample (i) \implies predict $\Omega_{\tilde{\chi}_1^0} h^2$ to 10%!

Result of fit

Result of fit

Unfortunately, chosen benchmark point ($m_{\tilde{g}} = 830$ GeV, $m_{\tilde{q}} \simeq 750$ GeV) is most likely excluded!

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850$ GeV, $A_3 = 800$ GeV

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850$ GeV, $A_3 = 800$ GeV Randomly choose $m_{\tilde{q},\tilde{g}} \in [600, 1000]$ GeV, other masses $\in [100, 1000]$ GeV, $\tan \beta \in [2, 50]$

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850$ GeV, $A_3 = 800$ GeV Randomly choose $m_{\tilde{q},\tilde{g}} \in [600, 1000]$ GeV, other masses $\in [100, 1000]$ GeV, $\tan \beta \in [2, 50]$ Consider 1808 observables, both counting rates and binned distributions

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850 \text{ GeV}$, $A_3 = 800 \text{ GeV}$ Randomly choose $m_{\tilde{q},\tilde{g}} \in [600, 1000] \text{ GeV}$, other masses $\in [100, 1000] \text{ GeV}$, $\tan \beta \in [2, 50]$ Consider 1808 observables, both counting rates and binned distributions Introduce " χ^2 –like" variable

$$\left(\Delta S_{AB}\right)^2 = \frac{1}{n_{\text{sig}}} \sum_{i=1}^{n_{\text{sig}}} \left(\frac{s_i^A - s_i^B}{\sigma_i^{AB}}\right)^2$$

Only "significant" signatures included

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850 \text{ GeV}$, $A_3 = 800 \text{ GeV}$ Randomly choose $m_{\tilde{q},\tilde{g}} \in [600, 1000] \text{ GeV}$, other masses $\in [100, 1000] \text{ GeV}$, $\tan \beta \in [2, 50]$ Consider 1808 observables, both counting rates and binned distributions Introduce " χ^2 –like" variable

$$\left(\Delta S_{AB}\right)^2 = \frac{1}{n_{\text{sig}}} \sum_{i=1}^{n_{\text{sig}}} \left(\frac{s_i^A - s_i^B}{\sigma_i^{AB}}\right)^2$$

Only "significant" signatures included Allow 1% syst. error (15% on total signal rate), 10 fb⁻¹ of 14 TeV data, no background

Arkani-Hamed et al., hep-ph/0512190

15 parameter description of weak–scale MSSM Fix $m_A = 850$ GeV, $A_3 = 800$ GeV Randomly choose $m_{\tilde{q},\tilde{g}} \in [600, 1000]$ GeV, other masses $\in [100, 1000]$ GeV, $\tan \beta \in [2, 50]$ Consider 1808 observables, both counting rates and binned distributions Introduce " χ^2 –like" variable

$$\left(\Delta S_{AB}\right)^2 = \frac{1}{n_{\text{sig}}} \sum_{i=1}^{n_{\text{sig}}} \left(\frac{s_i^A - s_i^B}{\sigma_i^{AB}}\right)^2$$

Only "significant" signatures included Allow 1% syst. error (15% on total signal rate), 10 fb⁻¹ of 14 TeV data, no background MC: $(\Delta S_{AB})^2 > 0.285 \implies$ models differ at > 95% c.l.

Results and Remarks

Found 283 degenerate pairs, with $(\delta S_{AB})^2 < 0.285$, for 43,026 "models" (i.e., sets of parameters)

Results and Remarks

Found 283 degenerate pairs, with $(\delta S_{AB})^2 < 0.285$, for 43,026 "models" (i.e., sets of parameters) Note

• Their observables are correlated $\Rightarrow (\delta S_{AB})^2$ is no true χ^2 \Rightarrow need MC to intepret it, from comparing runs with different random no. seed: is this reliable estimator for comparing different parameter sets?

Results and Remarks

Found 283 degenerate pairs, with $(\delta S_{AB})^2 < 0.285$, for 43,026 "models" (i.e., sets of parameters) Note

- Their observables are correlated $\Rightarrow (\delta S_{AB})^2$ is no true χ^2 \Rightarrow need MC to intepret it, from comparing runs with different random no. seed: is this reliable estimator for comparing different parameter sets?
- Statistics looks weird! Comparing two simulations of same "model", get 611 (out of 2600) cases where some 2ℓ observable has $> 5\sigma$ discrepancy: way too many!

Simpler approach

Bornhauser and MD, in progress

Define 12 disjunct event classes, depending on no., charge, flavor of leptons

Simpler approach

Bornhauser and MD, in progress

- Define 12 disjunct event classes, depending on no., charge, flavor of leptons
- Consider 7 mostly uncorrelated observables for each class: No. of events; $\langle n_{\tau^{\pm}} \rangle$; $\langle n_b \rangle$; $\langle n_j \rangle$; $\langle n_j \rangle$; $\langle H_T \rangle$

Simpler approach

Bornhauser and MD, in progress

- Define 12 disjunct event classes, depending on no., charge, flavor of leptons
- Consider 7 mostly uncorrelated observables for each class: No. of events; $\langle n_{\tau^{\pm}} \rangle$; $\langle n_b \rangle$; $\langle n_j \rangle$; $\langle n_j \rangle$; $\langle H_T \rangle$
- Define proper χ^2 , incl. corr. between $\langle n_j \rangle$, $\langle n_j^2 \rangle$, only including significant observables: test with MC.

Results of simpler approach

 W/o syst. error: only one of 283 "degenerate" pairs has p > 0.05, and two parameter sets really are very similar! (Except for heavy sleptons.)

Results of simpler approach

- W/o syst. error: only one of 283 "degenerate" pairs has p > 0.05, and two parameter sets really are very similar! (Except for heavy sleptons.)
- Introducing syst. errors as Arkani-Hamed et al.: 45 out of 283 pairs have p > 0.05; still are pretty similar physically

Results of simpler approach

- W/o syst. error: only one of 283 "degenerate" pairs has p > 0.05, and two parameter sets really are very similar! (Except for heavy sleptons.)
- Introducing syst. errors as Arkani-Hamed et al.: 45 out of 283 pairs have p > 0.05; still are pretty similar physically
- Introducing SM background, but no syst. error: 10 pairs have p > 0.05
In many WIMP models, Higgs exch. dominates χp scattering, in which case $\sigma_{\chi p} \propto 1/m_H^4$: crucial to know Higgs mass!

- In many WIMP models, Higgs exch. dominates χp scattering, in which case $\sigma_{\chi p} \propto 1/m_H^4$: crucial to know Higgs mass!
- In SUSY at large $\tan \beta$: $\sigma_{\tilde{\chi}_1^0 p} \propto \tan^2 \beta / m_A^4$: need info on heavy Higgses!

- In many WIMP models, Higgs exch. dominates χp scattering, in which case $\sigma_{\chi p} \propto 1/m_H^4$: crucial to know Higgs mass!
- In SUSY at large $\tan \beta$: $\sigma_{\tilde{\chi}_1^0 p} \propto \tan^2 \beta / m_A^4$: need info on heavy Higgses!
- TeVatron and CMS searches for $H, A \rightarrow \tau^+ \tau^$ significantly increase lower bound on DM-allowed $\tilde{\chi}_1^0$ in general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338); exclude scenarios with very large $\sigma_{\tilde{\chi}_1^0 p}$.

- In many WIMP models, Higgs exch. dominates χp scattering, in which case $\sigma_{\chi p} \propto 1/m_H^4$: crucial to know Higgs mass!
- In SUSY at large $\tan \beta$: $\sigma_{\tilde{\chi}_1^0 p} \propto \tan^2 \beta / m_A^4$: need info on heavy Higgses!
- TeVatron and CMS searches for $H, A \rightarrow \tau^+ \tau^$ significantly increase lower bound on DM-allowed $\tilde{\chi}_1^0$ in general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338); exclude scenarios with very large $\sigma_{\tilde{\chi}_1^0 p}$.
- Higgs searches can also be used to distinguish between WIMP models and to help determine parameters. E.g. m_h in MSSM constrains stop sector.

Well-motivated WIMP models can be tested at colliders!

- Well-motivated WIMP models can be tested at colliders!
- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.

- Well-motivated WIMP models can be tested at colliders!
- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.
- LHC *not* very good for "model–independent" WIMP search. (Signal is $\mathcal{O}(\alpha^2 \alpha_S)$, background is $\mathcal{O}(\alpha \alpha_S)$.)

- Well-motivated WIMP models can be tested at colliders!
- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.
- LHC *not* very good for "model–independent" WIMP search. (Signal is $\mathcal{O}(\alpha^2 \alpha_S)$, background is $\mathcal{O}(\alpha \alpha_S)$.)
- If WIMP signal is found at LHC, LHC experiments will be better at extracting parameters than indicated by theory analyses that have been published so far; many avenues remain to be explored.

- Well-motivated WIMP models can be tested at colliders!
- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.
- LHC *not* very good for "model–independent" WIMP search. (Signal is $\mathcal{O}(\alpha^2 \alpha_S)$, background is $\mathcal{O}(\alpha \alpha_S)$.)
- If WIMP signal is found at LHC, LHC experiments will be better at extracting parameters than indicated by theory analyses that have been published so far; many avenues remain to be explored.
- Higgs sector also very important for WIMP physics!