MSSM Phenomenology at the LHC

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

1 Introduction: Finetuning and Weak–Scale Supersymmetry

1 Introduction: Finetuning and Weak–Scale Supersymmetry

2 The Basics (a) \tilde{q}, \tilde{g} Production Channels (b) \tilde{g}, \tilde{q} Decays

1 Introduction: Finetuning and Weak–Scale Supersymmetry

2 The Basics (a) \tilde{q}, \tilde{g} Production Channels (b) \tilde{g}, \tilde{q} Decays

3 Mass Reach

1 Introduction: Finetuning and Weak–Scale Supersymmetry

- 2 The Basics (a) \tilde{q}, \tilde{g} Production Channels (b) \tilde{g}, \tilde{q} Decays
- 3 Mass Reach
- 4 Examples for Analyses (a) Model Discrimination (b) SUSY Rapidity Gaps

1 Introduction: Finetuning and Weak–Scale Supersymmetry

- 2 The Basics (a) \tilde{q}, \tilde{g} Production Channels (b) \tilde{g}, \tilde{q} Decays
- 3 Mass Reach
- 4 Examples for Analyses (a) Model Discrimination (b) SUSY Rapidity Gaps

5 Summary

Introduction: Finetuning Problem

In SM: loop corrections to squared Higgs boson mass diverge quadratically!

Introduction: Finetuning Problem

In SM: loop corrections to squared Higgs boson mass diverge quadratically!

$$\delta m_{\phi}^2 = \frac{\Lambda^2}{8\pi^2} \left(3\lambda_t^2 + 2g^2 + \dots \right)$$

 Λ : quadratic momentum cut–off

Introduction: Finetuning Problem

In SM: loop corrections to squared Higgs boson mass diverge quadratically!

$$\delta m_{\phi}^2 = \frac{\Lambda^2}{8\pi^2} \left(3\lambda_t^2 + 2g^2 + \dots \right)$$

 Λ : quadratic momentum cut–off

 \implies Difficult to keep m_{ϕ} much below highest energy where SM is applicable!

Supersymmetry postulates existence of superpartners with spin differing by 1/2 unit, "same" interactions

Supersymmetry postulates existence of superpartners with spin differing by 1/2 unit, "same" interactions \implies additional diagrams exist:

Supersymmetry postulates existence of superpartners with spin differing by 1/2 unit, "same" interactions \implies additional diagrams exist:

These cancel the quadratic divergencies!

Supersymmetry postulates existence of superpartners with spin differing by 1/2 unit, "same" interactions \implies additional diagrams exist:

These cancel the quadratic divergencies!

$$\delta m_{\phi}^2 \sim \frac{1}{8\pi^2} \left[\lambda_t^2 \left(m_{\tilde{t}}^2 - m_t^2 \right) + g^2 \left(M_{\widetilde{W}}^2 - M_W^2 \right) + \dots \right]$$

Supersymmetry postulates existence of superpartners with spin differing by 1/2 unit, "same" interactions \implies additional diagrams exist:

These cancel the quadratic divergencies!

$$\delta m_{\phi}^2 \sim \frac{1}{8\pi^2} \left[\lambda_t^2 \left(m_{\tilde{t}}^2 - m_t^2 \right) + g^2 \left(M_{\widetilde{W}}^2 - M_W^2 \right) + \dots \right]$$

Want $\delta m_{\phi}^2 \leq (100 \text{ GeV})^2 \implies \text{need sparticle masses} \lesssim 1 \text{ TeV!}$

Smaller sparticle masses are better: finetuning $\propto m_{\tilde{t}}^2, m_{\widetilde{W}}^2$!

- Smaller sparticle masses are better: finetuning $\propto m_{\tilde{t}}^2, m_{\widetilde{W}}^2$!
- Argument strictly only applies to $\tilde{t}, \tilde{W}, \tilde{Z}$ masses

- Smaller sparticle masses are better: finetuning $\propto m_{\tilde{t}}^2, m_{\widetilde{W}}^2$!
- Argument strictly only applies to $\tilde{t}, \widetilde{W}, \widetilde{Z}$ masses
- But:
 - \tilde{g} couples strongly to $\tilde{t}: m_{\tilde{g}} \gg m_{\tilde{t}_2}$ not possible
 - Get (new) term $\delta m_{\phi}^2 \sim \frac{g_Y^2 Y_{\phi}}{8\pi^2} \sum_{\tilde{f}} Y_{\tilde{f}} m_{\tilde{f}}^2$ ($U(1)_Y D$ -term)

 \implies Need all sfermions below (few) TeV! Or cancellations.

- Smaller sparticle masses are better: finetuning $\propto m_{\tilde{t}}^2, m_{\widetilde{W}}^2$!
- Argument strictly only applies to $\tilde{t}, \widetilde{W}, \widetilde{Z}$ masses
- But:
 - \tilde{g} couples strongly to $\tilde{t}: m_{\tilde{g}} \gg m_{\tilde{t}_2}$ not possible
 - Get (new) term $\delta m_{\phi}^2 \sim \frac{g_Y^2 Y_{\phi}}{8\pi^2} \sum_{\tilde{f}} Y_{\tilde{f}} m_{\tilde{f}}^2$ ($U(1)_Y D$ -term)

 \implies Need all sfermions below (few) TeV! Or cancellations.

Calculation holds for mass in potential, not physical mass.

Other reasons for weak-scale SUSY

• Muon magnetic moment: expt. ~ 3 sigma above SM prediction; can be fixed via "light" $\tilde{\mu}, \tilde{\nu}_{\mu}$, gauginos.

Other reasons for weak-scale SUSY

- Muon magnetic moment: expt. ~ 3 sigma above SM prediction; can be fixed via "light" $\tilde{\mu}, \tilde{\nu}_{\mu}$, gauginos.
- Unification of gauge couplings: Logarithmically sensitive to sparticle masses

Other reasons for weak-scale SUSY

- Muon magnetic moment: expt. ~ 3 sigma above SM prediction; can be fixed via "light" $\tilde{\mu}, \tilde{\nu}_{\mu}$, gauginos.
- Unification of gauge couplings: Logarithmically sensitive to sparticle masses
- **Dark Matter:** can tolerate $m_{\tilde{\chi}_1^0} > 1$ TeV.

Basics of MSSM Phenomenology

SUSY signals at LHC dominated by production and decay of squarks and gluinos!

Basics of MSSM Phenomenology

SUSY signals at LHC dominated by production and decay of squarks and gluinos!

Partonic cross sections: (LO QCD; $m_{\tilde{g}} = m_{\tilde{q}} = \hat{s}/8$; $n_f = 5$ deg. squarks)

Process	$\hat{\sigma} \left[rac{\pi lpha_s^2}{\hat{s}} ight]$
$q_i \bar{q}_j \to \tilde{q}\bar{\tilde{q}}$	$0.30\delta_{ij} + 0.47$
$gg \to \tilde{q}\bar{\tilde{q}}$	0.36
$q_i q_j \to \tilde{q} \tilde{q}$	$0.47 - 0.065\delta_{ij}$
$q\bar{q} \rightarrow \tilde{g}\tilde{g}$	0.16
$qg \rightarrow \tilde{q}\tilde{g}$	1.21
$gg \to \tilde{g}\tilde{g}$	2.45

Basics of MSSM Phenomenology

SUSY signals at LHC dominated by production and decay of squarks and gluinos!

Partonic cross sections: (LO QCD; $m_{\tilde{g}} = m_{\tilde{q}} = \hat{s}/8$; $n_f = 5$ deg. squarks)

Process	$\hat{\sigma} \left[rac{\pi lpha_s^2}{\hat{s}} ight]$
$q_i \bar{q}_j \to \tilde{q}\bar{\tilde{q}}$	$0.30\delta_{ij} + 0.47$
$gg \to \tilde{q}\bar{\tilde{q}}$	0.36
$q_i q_j \to \tilde{q} \tilde{q}$	$0.47 - 0.065\delta_{ij}$
$q\bar{q} \rightarrow \tilde{g}\tilde{g}$	0.16
$qg \rightarrow \tilde{q}\tilde{g}$	1.21
$gg ightarrow { ilde g} { ilde g}$	2.45

Reminiscent of hierarchy of QCD $2 \rightarrow 2$ cross sections: SUSY at work!

First computed in 1980's. Harrison & Llewellyn–Smith 1983; Dawson, Eichten & Quigg 1985. Refinements:

▶ NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996: "k-factor" $\in [1.0, 1.5]$ for \tilde{q} production, $\in [1.3, 2.5]$ for $\tilde{g}\tilde{g}$.

First computed in 1980'S. Harrison & Llewellyn–Smith 1983; Dawson, Eichten & Quigg 1985. Refinements:

- ▶ NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996: "k-factor" $\in [1.0, 1.5]$ for \tilde{q} production, $\in [1.3, 2.5]$ for $\tilde{g}\tilde{g}$.
- **Electroweak tree-level contributions** Bornhauser, Drees, Dreiner & Kim 2008: up to $\sim 20\%$ in mSUGRA, up to $\sim 50\%$ in general

First computed in 1980'S. Harrison & Llewellyn–Smith 1983; Dawson, Eichten & Quigg 1985. Refinements:

- ▶ NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996: "k-factor" $\in [1.0, 1.5]$ for \tilde{q} production, $\in [1.3, 2.5]$ for $\tilde{g}\tilde{g}$.
- **Electroweak tree-level contributions** Bornhauser, Drees, Dreiner & Kim 2008: up to $\sim 20\%$ in mSUGRA, up to $\sim 50\%$ in general
- Electroweak one-loop corrections Hollik & Mirabella 2008; Hollik, Mirabella & Trenkel 2008; Gerner, Hollik, Mirabella & Trenkel 2010

First computed in 1980's. Harrison & Llewellyn–Smith 1983; Dawson, Eichten & Quigg 1985. Refinements:

- ▶ NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996: "k-factor" $\in [1.0, 1.5]$ for \tilde{q} production, $\in [1.3, 2.5]$ for $\tilde{g}\tilde{g}$.
- **Electroweak tree-level contributions** Bornhauser, Drees, Dreiner & Kim 2008: up to $\sim 20\%$ in mSUGRA, up to $\sim 50\%$ in general
- Electroweak one-loop corrections Hollik & Mirabella 2008; Hollik, Mirabella & Trenkel 2008; Gerner, Hollik, Mirabella & Trenkel 2010
- QCD threshold resummation Langenfeld & Moch 2009; Kulesza & Motyka 2009; Beenakker, Brensing, Krämer, Kulesza, Laenen & Niessen 2009; Hagiwara & Yokoya 2009; Beneke, Falgari & Schwinn 2010

First computed in 1980's. Harrison & Llewellyn–Smith 1983; Dawson, Eichten & Quigg 1985. Refinements:

- ▶ NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996: "k-factor" $\in [1.0, 1.5]$ for \tilde{q} production, $\in [1.3, 2.5]$ for $\tilde{g}\tilde{g}$.
- **Electroweak tree-level contributions** Bornhauser, Drees, Dreiner & Kim 2008: up to $\sim 20\%$ in mSUGRA, up to $\sim 50\%$ in general
- Electroweak one-loop corrections Hollik & Mirabella 2008; Hollik, Mirabella & Trenkel 2008; Gerner, Hollik, Mirabella & Trenkel 2010
- QCD threshold resummation Langenfeld & Moch 2009; Kulesza & Motyka 2009; Beenakker, Brensing, Krämer, Kulesza, Laenen & Niessen 2009; Hagiwara & Yokoya 2009; Beneke, Falgari & Schwinn 2010
- Flavor effects: See talk by Porod

pp Cross Sections

$$\sigma(pp \to \tilde{S}_1 \tilde{S}_2 X) = \sum_{\text{partons } i,j} \int_{s/s_{\min}}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_{i|p}(x,Q^2) f_{j|p}(\frac{\tau}{x},Q^2)$$
$$\cdot \hat{\sigma}(ij \to \tilde{S}_1 \tilde{S}_2) (\hat{s} = \tau s) \,.$$

Orange: partonic flux function; depends on i, j, τ , $(Q^2 = \hat{s})$.

Flux Functions

Flux Functions

Fluxes drop off faster for $m_{\tilde{g},\tilde{q}} > 0.5 - 1.0$ TeV!

Total NLO \tilde{q}, \tilde{g} cross sections at $\sqrt{s} = 7$ TeV Baer, Barger, Lessa, Tata 2010

MSSM at the LHC - p. 11/35

\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$

\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$ Partonic cross sections similar: $\frac{\alpha_s^2}{m_{\widetilde{g}}^2} = \frac{\alpha_W^2}{m_{\widetilde{W}}^2}$

\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$ Partonic cross sections similar: $\frac{\alpha_s^2}{m_{\widetilde{g}}^2} = \frac{\alpha_W^2}{m_{\widetilde{W}}^2}$ Fluxes: $q\bar{q}$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{W}} \simeq m_{\widetilde{g}}$ vs. $qq + q\bar{q} + qg + gg$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{g}}$:
\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$ Partonic cross sections similar: $\frac{\alpha_s^2}{m_{\widetilde{g}}^2} = \frac{\alpha_W^2}{m_{\widetilde{W}}^2}$ Fluxes: $q\bar{q}$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{W}} \simeq m_{\widetilde{g}}$ vs. $qq + q\bar{q} + qg + gg$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{g}}$:

S/B better for \tilde{q}, \tilde{g} production than for elw $\tilde{\chi}\tilde{\chi}$ production, if $\tilde{\chi}$ decays hadronically

\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$ Partonic cross sections similar: $\frac{\alpha_s^2}{m_{\widetilde{g}}^2} = \frac{\alpha_W^2}{m_{\widetilde{W}}^2}$ Fluxes: $q\bar{q}$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{W}} \simeq m_{\widetilde{g}}$ vs. $qq + q\bar{q} + qg + gg$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{g}}$:

S/B better for \tilde{q},\tilde{g} production than for elw $\tilde{\chi}\tilde{\chi}$ production, if $\tilde{\chi}$ decays hadronically

Hence $\tilde{\chi}\tilde{\chi}$ production only relevant for large \tilde{q}, \tilde{g} mass (earlier if $m_{\tilde{q}} > m_{\tilde{g}}$): Needs large luminosity.

\tilde{q}, \tilde{g} vs ELW Gaugino Production

Assume gaugino mass unification $\implies m_{\widetilde{W}} \simeq m_{\widetilde{g}}/3$ Partonic cross sections similar: $\frac{\alpha_s^2}{m_{\widetilde{g}}^2} = \frac{\alpha_W^2}{m_{\widetilde{W}}^2}$ Fluxes: $q\bar{q}$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{W}} \simeq m_{\widetilde{g}}$ vs. $qq + q\bar{q} + qg + gg$ flux at $\sqrt{\hat{s}} = \sqrt{8}m_{\widetilde{g}}$:

S/B better for \tilde{q},\tilde{g} production than for elw $\tilde{\chi}\tilde{\chi}$ production, if $\tilde{\chi}$ decays hadronically

Hence $\tilde{\chi}\tilde{\chi}$ production only relevant for large \tilde{q}, \tilde{g} mass (earlier if $m_{\tilde{q}} > m_{\tilde{g}}$): Needs large luminosity.

Situation different at Tevatron: \exists pure valence quark contribution to $q\bar{q}$ flux!

Ratio $q\bar{q}$ flux to total flux

• If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB

- If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB
- If gaugino masses unify (mSUGRA, mGMSB): $m_{\tilde{g}}: m_{\widetilde{W}}: m_{\tilde{B}} \simeq 6: 2: 1$ at SUSY mass scale

- If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB
- If gaugino masses unify (mSUGRA, mGMSB): $m_{\tilde{g}}: m_{\widetilde{W}}: m_{\tilde{B}} \simeq 6: 2: 1$ at SUSY mass scale
- $m_{\tilde{q}} \gtrsim 0.75 m_{\tilde{g}}$, or $m_{\tilde{q}}^2$ turns negative at a rather low energy Scale Ellwanger 1984

- If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB
- If gaugino masses unify (mSUGRA, mGMSB): $m_{\tilde{g}}: m_{\widetilde{W}}: m_{\tilde{B}} \simeq 6: 2: 1$ at SUSY mass scale
- $m_{\tilde{q}} \gtrsim 0.75 m_{\tilde{g}}$, or $m_{\tilde{q}}^2$ turns negative at a rather low energy Scale Ellwanger 1984
- Hence for gaugino mass unification:

- If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB
- If gaugino masses unify (mSUGRA, mGMSB): $m_{\tilde{g}}: m_{\widetilde{W}}: m_{\tilde{B}} \simeq 6: 2: 1$ at SUSY mass scale
- $m_{\tilde{q}} \gtrsim 0.75 m_{\tilde{g}}$, or $m_{\tilde{q}}^2$ turns negative at a rather low energy Scale Ellwanger 1984
- Hence for gaugino mass unification:
 - $\tilde{q}, \, \tilde{g} \to \widetilde{W}, \, \tilde{B}$ decays possible

- If LSP is stable: must be neutral. If Dark Matter: should be lightest neutralino $\tilde{\chi}_1^0$. \tilde{G} as LSP: see GMSB
- If gaugino masses unify (mSUGRA, mGMSB): $m_{\tilde{g}}: m_{\widetilde{W}}: m_{\tilde{B}} \simeq 6: 2: 1$ at SUSY mass scale
- $m_{\tilde{q}} \gtrsim 0.75 m_{\tilde{g}}$, or $m_{\tilde{q}}^2$ turns negative at a rather low energy Scale Ellwanger 1984
- Hence for gaugino mass unification:
 - $\tilde{q}, \, \tilde{g} \to \widetilde{W}, \, \tilde{B}$ decays possible
 - $\widetilde{W} \to \widetilde{B}$ decays possible

• $\tilde{q} \rightarrow \tilde{g}q$ dominant

• $\tilde{q} \rightarrow \tilde{g}q$ dominant

• $B(\tilde{q} \to \widetilde{W}q) \sim \frac{3\alpha_W}{\alpha_s} I_{3,\tilde{q}}^2$: only for SU(2) doublet, "L" squarks

• $\tilde{q} \rightarrow \tilde{g}q$ dominant

• $B(\tilde{q} \to \widetilde{W}q) \sim \frac{3\alpha_W}{\alpha_s} I_{3,\tilde{q}}^2$: only for SU(2) doublet, "L" squarks

•
$$B(\tilde{q} \to \tilde{B}q) \sim \frac{\alpha_Y}{\alpha_s} Y_{\tilde{q}}^2$$

- $\tilde{q} \rightarrow \tilde{g}q$ dominant
 - $B(\tilde{q} \to \widetilde{W}q) \sim \frac{3\alpha_W}{\alpha_s} I_{3,\tilde{q}}^2$: only for SU(2) doublet, "L" squarks

•
$$B(\tilde{q} \to \tilde{B}q) \sim \frac{\alpha_Y}{\alpha_s} Y_{\tilde{q}}^2$$

 $\tilde{g} \to q\bar{q}\widetilde{W}, q\bar{q}\tilde{B}, \text{ with ratio of Brs} \simeq 3\alpha_W/\alpha_Y \text{ if } m_{\tilde{q}_L} \simeq m_{\tilde{q}_R}.$

• $\tilde{q}_L \to \widetilde{W}q$ dominant; ratio $\widetilde{W}^{\pm} : \widetilde{W}^0 \simeq 2 : 1$ $\tilde{q}_L \to \tilde{B}q \sim \text{(few \%): } Y_{\tilde{q}_L} = 1/6$

• $\tilde{q}_L \to \widetilde{W}q$ dominant; ratio $\widetilde{W}^{\pm} : \widetilde{W}^0 \simeq 2 : 1$ $\tilde{q}_L \to \tilde{B}q \sim \text{(few \%): } Y_{\tilde{q}_L} = 1/6$

 $I \quad \tilde{q}_R \to \tilde{B}q \text{ dominant: } I_{3,\tilde{q}_R} = 0.$

- $\tilde{q}_L \to \widetilde{W}q$ dominant; ratio $\widetilde{W}^{\pm} : \widetilde{W}^0 \simeq 2 : 1$ $\tilde{q}_L \to \tilde{B}q \sim \text{(few \%): } Y_{\tilde{q}_L} = 1/6$
- $I \quad \tilde{q}_R \to \tilde{B}q \text{ dominant: } I_{3,\tilde{q}_R} = 0.$
- $\tilde{g} \to \tilde{q}_{L,R}q$; about equally into \tilde{q}_L and \tilde{q}_R if $m_{\tilde{q}_L} \simeq m_{\tilde{q}_R}$. But rather close to edge of phase space!

- $\tilde{q}_L \to \widetilde{W}q$ dominant; ratio $\widetilde{W}^{\pm} : \widetilde{W}^0 \simeq 2 : 1$ $\tilde{q}_L \to \tilde{B}q \sim \text{(few \%): } Y_{\tilde{q}_L} = 1/6$
- $\ \, \tilde{q}_R \to \tilde{B}q \text{ dominant: } I_{3,\tilde{q}_R} = 0.$
- $\tilde{g} \to \tilde{q}_{L,R}q$; about equally into \tilde{q}_L and \tilde{q}_R if $m_{\tilde{q}_L} \simeq m_{\tilde{q}_R}$. But rather close to edge of phase space!

Quite often: $m_{\tilde{u},\tilde{d},\tilde{s},\tilde{c}} > m_{\tilde{b},\tilde{t}}$ (RG effects of b, t Yukawas; L - R mixing) $\implies \tilde{g} \rightarrow \tilde{b}^{(*)}\bar{b}, \tilde{t}^{(*)}\bar{t} + cc$ often dominant!

 $\widetilde{W} \to \widetilde{B}f\overline{f}$ via real or virtual \widetilde{f} , Higgs, W^{\pm}/Z^0 exchange.

 $\widetilde{W} \to \widetilde{B}f\overline{f}$ via real or virtual \widetilde{f} , Higgs, W^{\pm}/Z^{0} exchange. Brs strongly depend on many parameters

 $\widetilde{W} \to \widetilde{B}f\bar{f}$ via real or virtual \widetilde{f} , Higgs, W^{\pm}/Z^{0} exchange. Brs strongly depend on many parameters If $m_{\widetilde{W}} > m_{\widetilde{\ell}} : \widetilde{W}^{0} \to \ell^{+}\ell^{-}\widetilde{B}$ via two 2–body decays!

 $\widetilde{W} \to \widetilde{B}f\bar{f}$ via real or virtual \tilde{f} , Higgs, W^{\pm}/Z^{0} exchange. Brs strongly depend on many parameters If $m_{\widetilde{W}} > m_{\tilde{\ell}} : \widetilde{W}^{0} \to \ell^{+}\ell^{-}\tilde{B}$ via two 2–body decays! But: if $m_{\widetilde{W}} > m_{\tilde{\ell}_{L}} : \widetilde{W} \to \tilde{\tau}_{1}\tau$ dominates! ($\tilde{\tau}_{1}$ is lighter, has sizable $\tilde{\tau}_{L}$ component.)

"Typically" (mGMSB, much of mSUGRA)

Higgsino mass $|\mu| > m_{\widetilde{W}} > m_{\widetilde{B}}$

"Typically" (mGMSB, much of mSUGRA)

$$\begin{array}{l} \mbox{Higgsino mass } |\mu| > m_{\widetilde{W}} > m_{\widetilde{B}} \\ \Longrightarrow m_{\widetilde{\chi}_3^0} \simeq m_{\widetilde{\chi}_4^0} \simeq m_{\widetilde{\chi}_2^\pm} \simeq |\mu| \mbox{ higgsino-like} \\ m_{\widetilde{\chi}_2^0} \simeq m_{\widetilde{\chi}_1^\pm} \simeq m_{\widetilde{W}} \mbox{ wino-like} \\ m_{\widetilde{\chi}_1^0} \simeq m_{\widetilde{\chi}_2^0}/2 \mbox{ bino-like.} \end{array}$$

"Typically" (mGMSB, much of mSUGRA)

$$\begin{array}{l} \mbox{Higgsino mass } |\mu| > m_{\widetilde{W}} > m_{\widetilde{B}} \\ \Longrightarrow m_{\widetilde{\chi}_3^0} \simeq m_{\widetilde{\chi}_4^0} \simeq m_{\widetilde{\chi}_2^\pm} \simeq |\mu| \mbox{ higgsino-like} \\ m_{\widetilde{\chi}_2^0} \simeq m_{\widetilde{\chi}_1^\pm} \simeq m_{\widetilde{W}} \mbox{ wino-like} \\ m_{\widetilde{\chi}_1^0} \simeq m_{\widetilde{\chi}_2^0} / 2 \mbox{ bino-like.} \end{array}$$

But: $|\mu| \simeq m_{\widetilde{W}}$ or $|\mu| \simeq m_{\widetilde{B}}$ possible even in mSUGRA: gives more complicated mixing patterns!

• $qq \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow (q \tilde{\chi}_1^0) (q \tilde{\chi}_1^0)$ 2 very energetic jets ($E_T \gtrsim m_{\tilde{q}_R}/2$), large missing $E_T \ (\gtrsim m_{\tilde{q}_R}/\sqrt{2})$.

qq → *q̃*_R*q̃*_R → (*qχ̃*⁰₁)(*qχ̃*⁰₁)
 2 very energetic jets (*E*_T ≳ *m*_{*q̃*_R}/2), large missing *E*_T (≥ *m*_{*q̃*_R}/√2).

qq → *q̃*_R*q̃*_L → (*qχ̃*⁰₁)(*qχ̃*⁰₂) → (*qχ̃*⁰₁)(*qχ̃*⁰₁ℓ⁺ℓ⁻)
2 jets, ℓ⁺ℓ⁻ pair and missing E_T.

- *qq* → *q̃*_R*q̃*_R → (*qX̃*⁰₁)(*qX̃*⁰₁)
 2 very energetic jets (*E*_T ≳ *m_{q̃}*_R/2), large missing
 *E*_T (≳ *m_{q̃}*_R/√2).
- *qq* → *q̃*_R*q̃*_L → (*qX̃*⁰₁)(*qX̃*⁰₂) → (*qX̃*⁰₁)(*qX̃*⁰₁ℓ⁺ℓ⁻)
 2 jets, ℓ⁺ℓ⁻ pair and missing E_T.
- $ud \to \tilde{u}_L \tilde{d}_L \to (d\tilde{\chi}_1^+)(u\tilde{\chi}_1^-) \to (d\tilde{\chi}_1^0 \ell^+ \nu_\ell)(u\tilde{\chi}_1^0 \ell'^- \nu_{\bar{\ell}'})$ 2 jets, $\ell^+ \ell'^-$ pair and missing E_T

- *qq* → *q̃*_R*q̃*_R → (*qX̃*⁰₁)(*qX̃*⁰₁)
 2 very energetic jets (*E*_T ≳ *m_{q̃}*_R/2), large missing
 *E*_T (≥ *m_{q̃}*_R/√2).
- $qq \rightarrow \tilde{q}_R \tilde{q}_L \rightarrow (q \tilde{\chi}_1^0) (q \tilde{\chi}_2^0) \rightarrow (q \tilde{\chi}_1^0) (q \tilde{\chi}_1^0 \ell^+ \ell^-)$ 2 jets, $\ell^+ \ell^-$ pair and missing E_T .
- $ud \to \tilde{u}_L \tilde{d}_L \to (d\tilde{\chi}_1^+)(u\tilde{\chi}_1^-) \to (d\tilde{\chi}_1^0 \ell^+ \nu_\ell)(u\tilde{\chi}_1^0 \ell'^- \nu_{\bar{\ell}'})$ 2 jets, $\ell^+ \ell'^-$ pair and missing E_T
- $ug \to \tilde{u}_L \tilde{g} \to (d\tilde{\chi}_1^+)(\bar{\tilde{t}}_1 t) \to (d\ell^+ \nu_\ell \tilde{\chi}_1^0)(\bar{b}s\bar{c}\tilde{\chi}_1^0 b\ell'^+ \nu_{\ell'})$ 5 jets (incl. 2 *b*-jets), $\ell^+\ell'^+$ pair and missing E_T .

Standard classifiers are: Number of jets n_j , number of charged leptons n_ℓ ($\ell = e, \mu$)

Standard classifiers are: Number of jets n_j , number of charged leptons n_ℓ ($\ell = e, \mu$)

If $n_{\ell} = 2$: distinguish like sign (LS) pairs and opposite sign (OS) pairs, depending on charge; among latter, opposite sign same flavor (OSSF) is subcategory.

Standard classifiers are: Number of jets n_j , number of charged leptons n_ℓ ($\ell = e, \mu$)

If $n_{\ell} = 2$: distinguish like sign (LS) pairs and opposite sign (OS) pairs, depending on charge; among latter, opposite sign same flavor (OSSF) is subcategory.

Number of b-tags n_b is occasionally used

Standard classifiers are: Number of jets n_j , number of charged leptons n_ℓ ($\ell = e, \mu$)

If $n_{\ell} = 2$: distinguish like sign (LS) pairs and opposite sign (OS) pairs, depending on charge; among latter, opposite sign same flavor (OSSF) is subcategory.

Number of b-tags n_b is occasionally used

In addition, could look for:

• τ candidates, via $\tau \to \nu_{\tau}$ + hadrons: e.g. from $\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1^{\pm} \nu_{\tau} \to \tau^{\pm} \tilde{\chi}_1^0 \nu_{\tau}$.

• Z^0 candidates, via $Z^0 \to \ell^- \ell^+$: e.g. from $\tilde{\chi}_i^0 \to \tilde{\chi}_{j< i}^0 Z^0$

- top candidates, via "top tagging": e.g. from $\tilde{g} \rightarrow \tilde{t}_1 \bar{t}$
- Higgs candidates, via $h \to b\bar{b}$: e.g. from $\tilde{\chi}_i^0 \to \tilde{\chi}_{j< i}^0 h$

$mSUGRA \equiv CMSSM$

Most widely studied SUSY framework of SUSY. Defined by:

- Common scalar mass m_0
- Common gaugino mass $m_{1/2}$
- Common trilinear scalar interaction A_0

at scale of Grand Unification $M_X \simeq 2 \cdot 10^{16}$ GeV.

$mSUGRA \equiv CMSSM$

Most widely studied SUSY framework of SUSY. Defined by:

- Common scalar mass m_0
- Common gaugino mass $m_{1/2}$
- Common trilinear scalar interaction A_0

at scale of Grand Unification $M_X \simeq 2 \cdot 10^{16}$ GeV.

Bilinear scalar parameter B_0 assumed independent of A_0 ; traded for ratio of vevs $\tan \beta$

$mSUGRA \equiv CMSSM$

Most widely studied SUSY framework of SUSY. Defined by:

- Common scalar mass m_0
- Common gaugino mass $m_{1/2}$
- Common trilinear scalar interaction A_0

at scale of Grand Unification $M_X \simeq 2 \cdot 10^{16}$ GeV.

Bilinear scalar parameter B_0 assumed independent of A_0 ; traded for ratio of vevs $\tan \beta$

 $|\mu|$ determined via (radiative) electroweak symmetry breaking Ibáñez & Ross 1982 $\mu > 0$ preferred by $g_{\mu} - 2$, $b \rightarrow s\gamma$.
$mSUGRA \equiv CMSSM$

Most widely studied SUSY framework of SUSY. Defined by:

- Common scalar mass m_0
- Common gaugino mass $m_{1/2}$
- Common trilinear scalar interaction A_0

at scale of Grand Unification $M_X \simeq 2 \cdot 10^{16}$ GeV.

Bilinear scalar parameter B_0 assumed independent of A_0 ; traded for ratio of vevs $\tan \beta$

 $|\mu|$ determined via (radiative) electroweak symmetry breaking Ibáñez & Ross 1982 $\mu > 0$ preferred by $g_{\mu} - 2$, $b \rightarrow s\gamma$.

Assume $\tilde{\chi}_1^0$ is stable LSP: DM candidate! (See Dutta's talk.)

LHC reach

Reach defined by: require $S > 5\sqrt{B}$, S > 0.2B, at least 5 signal events. Consider many channels, optimize jet and missing E_T cuts within each channel; take best channel. No combination of channels! (Unlike Tevatron SM Higgs search.)

From: Baer, Barger, Lessa & Tata 2009/10

Optimized reach at $\sqrt{s} = 7$ **TeV**

Reach at $\sqrt{s} = 7$ **TeV, different channels**

Optimized reach at $\sqrt{s} = 10$ **TeV**

Optimized reach at $\sqrt{s} = 14$ **TeV**

mSUGRA Reach table: $m_{\tilde{g}}$ **reach in TeV**

\sqrt{s} [TeV]	$\int {\cal L} dt$ [fb $^{-1}$]	$m_{\tilde{q}} \lesssim m_{\tilde{g}}$	$m_{\tilde{q}} \gg m_{\tilde{g}}$
7	0.1	0.80	0.48
7	1.0	1.1	0.62
7	2.0	1.2	0.70
10	1	1.4	0.8
10	10	1.9	1.0
10	100	2.3	1.3
10	3000	2.9	1.8
14	1	1.9	1.1
14	10	2.4	1.5
14	100	3.1	1.8
14	3000	4.0	2.6 to 4.5 ?

Remarks

• Usually best reach in pure jets plus missing E_T channel. In SM, missing E_T comes from neutrinos, which are frequently produced together with charged leptons (W+jets, $t\bar{t}$).

Remarks

- Usually best reach in pure jets plus missing E_T channel. In SM, missing E_T comes from neutrinos, which are frequently produced together with charged leptons (W+jets, $t\bar{t}$).
- But: no optimization of leptonic observables attempted!

Remarks

- Usually best reach in pure jets plus missing E_T channel. In SM, missing E_T comes from neutrinos, which are frequently produced together with charged leptons (W+jets, $t\bar{t}$).
- But: no optimization of leptonic observables attempted!
- For "natural" sparticle masses: expect signals in many channels!

Reach in Other Scenarios

mGMSB (has gravitino LSP): at least as good, often better (hard, isolated photons or long–lived charged sleptons) Baer, Mercadante, Tata, Wang 2000

Reach in Other Scenarios

- mGMSB (has gravitino LSP): at least as good, often better (hard, isolated photons or long–lived charged sleptons) Baer, Mercadante, Tata, Wang 2000
- MAMSB: comparable; better, if long-lived $\tilde{\chi}_1^{\pm}$ can be detected Baer, Mizukoshi & Tata 2000

Reach in Other Scenarios

- mGMSB (has gravitino LSP): at least as good, often better (hard, isolated photons or long–lived charged sleptons) Baer, Mercadante, Tata, Wang 2000
- MAMSB: comparable; better, if long-lived $\tilde{\chi}_1^{\pm}$ can be detected Baer, Mizukoshi & Tata 2000
- Explicit *R*-parity breaking: Improves reach if $\tilde{\chi}_1^0 \rightarrow \ell^+ \ell'^- \nu$; worse reach for mSUGRA-like searches if $\tilde{\chi}_1^0 \rightarrow udd$ Baer, Chen & Tata 1996. : But: did not consider new single \tilde{q} production channels; new "jet substructure" methods to find "fat jets" from $\tilde{\chi}_1^0$ decay. Butterworth, Ellis, Raklev & Salam 2009. Certainly can probe $m_{\tilde{g}} \lesssim 1$ TeV at $\sqrt{s} = 14$ TeV with 10 fb⁻¹.

Consider SO(10) model with 2 intermediate scales: $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ Aulakh, Bajc, Melfo, Rasin & Senjanovic 2000

Consider SO(10) model with 2 intermediate scales: $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ Aulakh, Bajc, Melfo, Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to ν_R masses)

Consider SO(10) model with 2 intermediate scales: $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ Aulakh, Bajc, Melfo, Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to ν_R masses)

 \implies reduced $m_{\tilde{t}}, m_{\tilde{b}} (\sim 2\% \text{ effect})$

Consider SO(10) model with 2 intermediate scales: $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ Aulakh, Bajc, Melfo, Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to ν_R masses)

- \implies reduced $m_{\tilde{t}}, m_{\tilde{b}}$ (~ 2% effect)
- \implies reduced $|\mu|$ (by $\sim 10\%$): reduced $m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0}, m_{\tilde{\chi}_2^{\pm}}$; enhanced gaugino-higgsino mixing

Consider SO(10) model with 2 intermediate scales: $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$ Aulakh, Bajc, Melfo, Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to ν_R masses)

- \implies reduced $m_{\tilde{t}}, m_{\tilde{b}}$ (~ 2% effect)
- \implies reduced $|\mu|$ (by $\sim 10\%$): reduced $m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0}, m_{\tilde{\chi}_2^{\pm}}$; enhanced gaugino-higgsino mixing
- \implies significantly increased $B(\tilde{g} \rightarrow Z^0 + X)!$ (7.6% vs. 4.3% or 5.0%) MD, Kim, Park 2010

Subtracted $M_{\ell^+\ell^-}$ distribution ($m_0 \ll M_{1/2}$)

SO(10) has significantly more pronounced Z^0 peak

Subtracted $M_{\ell^+\ell^-}$ distribution ($m_0 \ll M_{1/2}$)

SO(10) has significantly more pronounced Z^0 peak

SO(10) model also has more like-sign di-lepton events: 492 vs. 422 (434).

SUSY and QCD

Bornhauser, MD, Dreiner, Kim 2009

 $qq \rightarrow \tilde{q}\tilde{q}$ can proceed via \tilde{g} (CNS: color non–singlet) and $\widetilde{W}, \widetilde{B}$ (CS: color singlet) exchange.

SUSY and QCD

Bornhauser, MD, Dreiner, Kim 2009

 $qq \rightarrow \tilde{q}\tilde{q}$ can proceed via \tilde{g} (CNS: color non–singlet) and $\widetilde{W}, \widetilde{B}$ (CS: color singlet) exchange.

CS exchange: "no" gluon emission between squarks CNS exchange: gluons emitted preferentially between squarks

SUSY and QCD

Bornhauser, MD, Dreiner, Kim 2009

 $qq \rightarrow \tilde{q}\tilde{q}$ can proceed via \tilde{g} (CNS: color non–singlet) and $\widetilde{W}, \widetilde{B}$ (CS: color singlet) exchange.

CS exchange: "no" gluon emission between squarks CNS exchange: gluons emitted preferentially between squarks

Effect biggest for $\tilde{q}_L \tilde{q}_L$ production (W exchange) \implies look for events with 2 hard jets, 2 leptons with same charge, missing E_T

e.g. $uu \to \tilde{u}_L \tilde{u}_L \to (\tilde{\chi}_1^+ d) (\tilde{\chi}_1^+ d) \to (\ell^+ \nu_\ell \tilde{\chi}_1^0 d) (\ell'^+ \nu_{\ell'} \tilde{\chi}_1^0 d)$ Additional leptons allowed. Require rapidity distance $\delta \eta \ge 3.0$

E_T between the hard jets (SPS1a')

Softer jets between the hard jets (SPS1a')

Summary

LHC will test idea of "weak scale Supersymmetry" decisively!

Summary

- LHC will test idea of "weak scale Supersymmetry" decisively!
- Generally will have signals in many different final states: offers many possibilities to distinguish between models by counting events! Can be combined with kinematic methods. (See Dutta's talk)

Summary

- LHC will test idea of "weak scale Supersymmetry" decisively!
- Generally will have signals in many different final states: offers many possibilities to distinguish between models by counting events! Can be combined with kinematic methods. (See Dutta's talk)
- For detailed analyses: sometimes have to worry mundane QCD uncertainties (e.g. HERWIG vs. PYTHIA)