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A typical spiral galaxy
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Rotation curve

Spiral galaxies rotate
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Rotation curve

Spiral galaxies rotate

For object on stable circular orbit:

centripetal force = gravitational force

v2

R
= GN

M(R)

R2

M(R): Mass w/in orbit
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M(R)
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M(R): Mass w/in orbit

For large R: M(R) −→ const., i.e. expect v(R) ∝ 1/
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Rotation curve

Spiral galaxies rotate

For object on stable circular orbit:

centripetal force = gravitational force

v2

R
= GN

M(R)

R2

M(R): Mass w/in orbit

For large R: M(R) −→ const., i.e. expect v(R) ∝ 1/
√

R

Observe: v(R) ≃ const.

=⇒ M(R) ∝ R: Invisible, “Dark” Matter forms halo
around visible galaxy
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True picture of a galaxy
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A typical galaxy cluster
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Dark matter in clusters of galaxies

Virial theorem: 〈Ekin〉 = −1
2
〈Epot〉 ∝ Mcluster

=⇒ total mass > 10× visible mass!
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Similar argument holds for single atoms:
Temperature of gas in cluster ∝ Mcluster!
Gives consistent result.
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Dark matter in clusters of galaxies

Virial theorem: 〈Ekin〉 = −1
2
〈Epot〉 ∝ Mcluster

=⇒ total mass > 10× visible mass!

Similar argument holds for single atoms:
Temperature of gas in cluster ∝ Mcluster!
Gives consistent result.

“Gravitational lensing”: Mass deflects light, by angle ∝
mass: Most direct way to measure
Mcluster ≥ 10 × Mvisible!
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Same cluster inX−ray light
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Example of gravitational lensing
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An analogy

If you see
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An analogy

If you see

or

Pisa Suurhusen

you conclude:

There’s a gravitational anomaly; or

There’s a missing force, which keeps the towers
standing
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Cosmic Microwave Background (CMB)

Prediction: Gamov 1950; Discovery: Penzias und
Wilson 1964
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Prediction: Gamov 1950; Discovery: Penzias und
Wilson 1964

Mean temperature: 2.7 K

Particle Dark Matter – p. 11/40
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Prediction: Gamov 1950; Discovery: Penzias und
Wilson 1964

Mean temperature: 2.7 K
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Cosmic Microwave Background (CMB)

Prediction: Gamov 1950; Discovery: Penzias und
Wilson 1964

Mean temperature: 2.7 K

Temperature variation: δT ≃ 10−4 K

From angular distribution and size of these variations:
can determine cosmological parameters!
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Sky in microwaves
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Results of CMB Analysis

Total mass ≃ 6× mass of “ordinary” (baryonic) matter
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Results of CMB Analysis

Total mass ≃ 6× mass of “ordinary” (baryonic) matter

Universe is flat (euclidian)
=⇒ total energy density ≃ 4× mass density

About 70% of total mass/energy density in form of
“Dark Energy”!

Confirmed by observations of distant supernovae

Expansion of Universe is accelarating: Dark Energy has
“negative pressure”!
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70% Dark Energy

25% non-baryonic DM

0.8% known
baryons

4.2% unknown
baryons

Composition of the Universe
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In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)
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In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)

Ca. 10−20 g Dark Matter (DM)

Ca. 10−25 g–equivalent Dark Energy (DE)
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Properties of DM

Has no electromagnetic interaction
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Properties of DM

Has no electromagnetic interaction

Has normal gravitational interaction

Clumps on length skales ≥ 103 ly

Cannot consist of normal (baryonic) matter

Strong evidence for existence of exotic particles!

Particle physicists have suggested many candidates
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis

Analyses of CMB data

Consistent result: Ωbarh
2 ≃ 0.02

=⇒ Need non–baryonic DM!
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Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes:

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes:

Not easy to make in sufficient quantity sufficiently early (?)

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes:

Not easy to make in sufficient quantity sufficiently early (?)

Microlensing searches (EROS, MACHO, OGLE) excludes

10
−7M⊙ <∼ Mbh

<∼ 1M⊙ as major part of our halo.

Particle Dark Matter – p. 18/40



Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes:

Not easy to make in sufficient quantity sufficiently early (?)

Microlensing searches (EROS, MACHO, OGLE) excludes

10
−7M⊙ <∼ Mbh

<∼ 1M⊙ as major part of our halo.

For bh’s to form “fluid”: need Mbh
<∼ 10

3M⊙
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)

which still survives today (lifetime τ ≫ 1010 yrs)

and has (strongly) suppressed coupling to elm radiation
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A remark on the “WMAP range”

It does not only come from WMAP data!
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A remark on the “WMAP range”

It does not only come from WMAP data!

It depends on many assumptions (e.g., nearly scale
independent primordial power spectrum)

Need for DM is much more general than this!
E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732
[gr-qc], arXiv:0709.2535 [astro-ph], explains
accelerated expansion in inhomogeneous universe:
finds ΩDM = 3.1+1.8

−1.1Ωbaryon.
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A remark on the “WMAP range”

It does not only come from WMAP data!

It depends on many assumptions (e.g., nearly scale
independent primordial power spectrum)

Need for DM is much more general than this!
E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732
[gr-qc], arXiv:0709.2535 [astro-ph], explains
accelerated expansion in inhomogeneous universe:
finds ΩDM = 3.1+1.8

−1.1Ωbaryon.
E.g. Ferreras, Sakellariadou, Yusaf, arXiv:0709.3189
[astro-ph]: Strong lensing implies that even MOND
needs galactic DM!
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter
Resulting bound on DM–DM scattering cross section
constrains models of interacting DM! Markevitch et al.,

astro–ph/0309303
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Bullet cluster
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Sterile keV neutrinos

Are SM gauge singlets, with small mixing angle θ to (at
least) one SM neutrino
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Sterile keV neutrinos

Are SM gauge singlets, with small mixing angle θ to (at
least) one SM neutrino

Have some independent motivation:
Are warm (or “cool”) DM: can solve “cusp problem”
Can explain pulsar kicks (through resonant
oscillation in presence of strong magnetic field)
Can lead to early re–ionization of Universe (no
longer a problem?)

Are unstable!
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Decays of “sterile” neutrinos

νs

νi

νj

ν̄jZ

∝ sin θ

νs
li

W

γ

νi∝ sin θ

Γ(νs) = G2
F m5

s

192π3 sin2 θ B(νs → γνi) ≃ 1%
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νs

νi

νj

ν̄jZ

∝ sin θ

νs
li

W

γ

νi∝ sin θ

Γ(νs) = G2
F m5

s

192π3 sin2 θ B(νs → γνi) ≃ 1%

Crossed version of left diagram contributes to production:
νi + f → νs + f ; νi + f → νs + f ′
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Decays of “sterile” neutrinos

νs

νi

νj

ν̄jZ

∝ sin θ

νs
li

W

γ

νi∝ sin θ

Γ(νs) = G2
F m5

s

192π3 sin2 θ B(νs → γνi) ≃ 1%

Crossed version of left diagram contributes to production:
νi + f → νs + f ; νi + f → νs + f ′

Right diagram gives only way to detect νs: monochromatic
(X–ray) photon at Eγ = mνs

/2.
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Standard sterile neutrinos are excluded!
Viel et al., astro-ph/0605706
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Standard sterile neutrinos are excluded!
Viel et al., astro-ph/0605706
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Ly-α - This work
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Boyarsky et al. (2006a)

XRB 
Boyarsky et al. (2005)

Watson et al. (2006)
M31

L=0 Production
Abazajian (2006) 

Pulsar kick
Kusenko & Segre’ (1999) 

Loophole: Use non–standard production mechanism: large
lepton asymmetry (∆L ∼ 0.1), νs coupling to inflaton, . . .
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Two production mechanisms:

Thermal production: E.g. g + g → g̃ + (G̃ or ã):

ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

TR : re–heat temperature of Universe
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Super–/E–WIMPs

Are massive particles whose interactions with ordinary
matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Two production mechanisms:

Thermal production: E.g. g + g → g̃ + (G̃ or ã):

ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

TR : re–heat temperature of Universe

From NLSP decay: E.g. τ̃1 → τ + G̃ or ã:
ΩG̃ or ãh

2 = Ω̃NLSPh2 mG̃ or ã

mNLSP
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Super–/E–WIMPs (cont.d)

NLSP → (G̃ or ã) + X decays tend to mess up BBN:
nearly as problematic as inverse decays
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Super–/E–WIMPs (cont.d)

NLSP → (G̃ or ã) + X decays tend to mess up BBN:
nearly as problematic as inverse decays

DM Super–/E–WIMPs cannot be detected

Allow charged NLSP, e.g. τ̃1. However, BBN requires
ττ̃1

< 2 · 103s (catalyzed Li overproduction): Can still see
τ̃1 tracks, but cannot collect τ̃1.
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WIMPs

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))
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(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Roughly weak cross section automatically gives roughly
right relic density for thermal WIMPs! (On logarithmic
scale)
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WIMPs

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Roughly weak cross section automatically gives roughly
right relic density for thermal WIMPs! (On logarithmic
scale)

Roughly weak interactions may allow both direct and
indirect detection of WIMPs
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WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.
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WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(
n2

χ − n2
χ, eq

)

H = Ṙ/R : Hubble parameter
〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM particles)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium
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Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Particle Dark Matter – p. 30/40



Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

Particle Dark Matter – p. 30/40



Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Particle Dark Matter – p. 30/40



Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
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decoupling (freeze–out) temperature TF .
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Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

For T < TF : WIMP production negligible, only annihilation
relevant in Boltzmann equation.

Gives
Ωχh2 ∝ 1

〈vσann〉
∼ 0.1 for σann ∼ pb
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Best motivated WIMP: neutralino χ̃0
1

Weak–scale Supersymmetry stabilizes hierarchy
against radiative corrections
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Best motivated WIMP: neutralino χ̃0
1

Weak–scale Supersymmetry stabilizes hierarchy
against radiative corrections

HLS theorem: biggest allowed symmetry of S−matrix is
product of gauge group and SUSY

Local SUSY closely related to gravity (hence
Supergravity, SUGRA)

Related to superstring theory: best candidate TOE

Allows one–step unification of gauge couplings

In simplest (Rp−invariant) version: LSP is stable: can
be good candidate for DM particle! (Free bonus, not
related to original motivation.)
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mSUGRA, mt = 172.7 GeV, tan β = 10, A0 = 0, µ > 0

Djouadi, MD, Kneur, hep-ph/0602001

m0 [GeV]

m1/2 [GeV]

Green: b → sγ excluded
Pink: Higgs search excl.
Magenta: 111 GeV ≤ mh ≤ 114 GeV
Red: 114 GeV ≤ mh ≤ 117 GeV
Dark grey: mτ̃1

< mχ̃0

1

Light grey: |µ|2 < 0 or sparticle search excl.

Black: DM favored
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Effect of varying tan β

tan β = 5 tan β = 30

tanβ = 50

Blue: gµ − 2 favored

(e+e− data)
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Indirect WIMP detection

WIMPs are everywhere!

Particle Dark Matter – p. 34/40



Indirect WIMP detection

WIMPs are everywhere!

In regions with increased WIMP density: WIMPs can
annihilate into SM particles even today:
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WIMPs are everywhere!

In regions with increased WIMP density: WIMPs can
annihilate into SM particles even today:

In halo of galaxies
Near center of galaxies
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Indirect WIMP detection

WIMPs are everywhere!

In regions with increased WIMP density: WIMPs can
annihilate into SM particles even today:

In halo of galaxies
Near center of galaxies
Inside the Sun or Earth
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Indirect WIMP detection: signals

Slow p̄, fast e+: background? Propagation?
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Indirect WIMP detection: signals

Slow p̄, fast e+: background? Propagation?

Slow d̄: Propagation?

Photons: Background?

GeV Neutrinos: Low rate

p̄, e+: Will be studied by PAMELA; first results soon!
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Indirect WIMP detection: signals

Slow p̄, fast e+: background? Propagation?

Slow d̄: Propagation?

Photons: Background?

GeV Neutrinos: Low rate

p̄, e+: Will be studied by PAMELA; first results soon!

Photons: To be studied by GLAST: Launch in February
2008!
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Direct WIMP detection

WIMPs are everywhere!
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Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N
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Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .
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Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

Is being pursued vigorously around the world!
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Searching for particle DM

Direct search: need shielding!
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Searching for particle DM

Direct search: need shielding!

Detector
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Searching for particle DM

Direct search: need shielding!

Detector
May also be testable at colliders
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ATLAS detector at the LHC
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Other DM Candidates

Axions: Are very light (ma ∼ µeV to meV) pseudoscalar
particles. Offer solution of “strong CP problem”. Are
produced non–thermally in QCD phase transition. Can
be detected through a → γ conversion.
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Other DM Candidates

Axions: Are very light (ma ∼ µeV to meV) pseudoscalar
particles. Offer solution of “strong CP problem”. Are
produced non–thermally in QCD phase transition. Can
be detected through a → γ conversion.

MeV DM: Very light WIMP, with very weak interactions.
Motivated by interpreting excess of 511 keV photons
from central region of our galaxy in terms of χχ → e+e−.
Cannot be detected, but model needs additional
exchange particles, which can be produced at colliders.
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Other DM Candidates

Axions: Are very light (ma ∼ µeV to meV) pseudoscalar
particles. Offer solution of “strong CP problem”. Are
produced non–thermally in QCD phase transition. Can
be detected through a → γ conversion.

MeV DM: Very light WIMP, with very weak interactions.
Motivated by interpreting excess of 511 keV photons
from central region of our galaxy in terms of χχ → e+e−.
Cannot be detected, but model needs additional
exchange particles, which can be produced at colliders.

Superheavy DM: Assumed to be unstable, with
τχ ∼ 1017 yrs. Motivated by attempt to explain UHECR.
Produced in very early universe, probably
non–thermally. Recent UHECR data (AUGER) seem to
disfavor this scenario.
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Summary

Dark Matter
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Summary

Dark Matter
Existence confirmed by many independent
observations
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Summary

Dark Matter
Existence confirmed by many independent
observations
Can be explained using established particle physics
methods
Direct and/or indirect detection of DM particles may
be feasible
Further tests at the LHC possible in many models

Particle Dark Matter – p. 40/40
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