Particle Dark Matter

Manuel Drees PI, Bonn University

Observations

- Observations
- Dark Matter

- Observations
- Dark Matter
 - Making it

- Observations
- Dark Matter
 - Making it
 - Detecting it

- Observations
- Dark Matter
 - Making it
 - Detecting it
- Summary

A typical spiral galaxy

Spiral galaxies rotate

- Spiral galaxies rotate
- For object on stable circular orbit:

centripetal force = gravitational force $\frac{v^2}{R} = G_N \frac{M(R)}{R^2}$

M(R): Mass w/in orbit

- Spiral galaxies rotate
- For object on stable circular orbit:

centripetal force = gravitational force $\frac{v^2}{R} = G_N \frac{M(R)}{R^2}$

M(R): Mass w/in orbit

• For large R: $M(R) \longrightarrow const.$, i.e. expect $v(R) \propto 1/\sqrt{R}$

- Spiral galaxies rotate
- For object on stable circular orbit:

centripetal force = gravitational force $\frac{v^2}{R} = G_N \frac{M(R)}{R^2}$

M(R): Mass w/in orbit

• For large R: $M(R) \longrightarrow const.$, i.e. expect $v(R) \propto 1/\sqrt{R}$

• Observe: $v(R) \simeq const.$

- Spiral galaxies rotate
- For object on stable circular orbit:

centripetal force = gravitational force $\frac{v^2}{R} = G_N \frac{M(R)}{R^2}$

M(R): Mass w/in orbit

- ▶ For large R: $M(R) \longrightarrow const.$, i.e. expect $v(R) \propto 1/\sqrt{R}$
- Observe: $v(R) \simeq const.$
- $\implies M(R) \propto R:$ Invisible, "Dark" Matter forms halo around visible galaxy

True picture of a galaxy

A typical galaxy cluster

Dark matter in clusters of galaxies

• Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!

Dark matter in clusters of galaxies

- Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!
- Similar argument holds for single atoms: Temperature of gas in cluster $\propto M_{cluster}!$ Gives consistent result.

Dark matter in clusters of galaxies

- Virial theorem: $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle \propto M_{\rm cluster}$ \implies total mass > 10× visible mass!
- Similar argument holds for single atoms: Temperature of gas in cluster $\propto M_{cluster}!$ Gives consistent result.
- "Gravitational lensing": Mass deflects light, by angle \propto mass: Most direct way to measure $M_{\text{cluster}} \ge 10 \times M_{\text{visible}}!$

Same cluster in *X***-ray light**

Example of gravitational lensing

If you see

Pisa

Suurhusen

If you see

or

Pisa

Suurhusen

If you see

or

you conclude:

or

Suurhusen

If you see

you conclude:

There's a gravitational anomaly; or

or

Suurhusen

If you see

Pisa

you conclude:

- There's a gravitational anomaly; or
- There's a missing force, which keeps the towers standing

Prediction: Gamov 1950; Discovery: Penzias und Wilson 1964

- Prediction: Gamov 1950; Discovery: Penzias und Wilson 1964
- Mean temperature: 2.7 K

- Prediction: Gamov 1950; Discovery: Penzias und Wilson 1964
- Mean temperature: 2.7 K
- Temperature variation: $\delta T \simeq 10^{-4} \text{ K}$

- Prediction: Gamov 1950; Discovery: Penzias und Wilson 1964
- Mean temperature: 2.7 K
- Temperature variation: $\delta T \simeq 10^{-4}$ K
- From angular distribution and size of these variations: can determine cosmological parameters!

Sky in microwaves

• Total mass $\simeq 6 \times$ mass of "ordinary" (baryonic) matter

- Total mass $\simeq 6 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 total energy density $\simeq 4 \times$ mass density

- Total mass $\simeq 6 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 4 \times$ mass density
- About 70% of total mass/energy density in form of "Dark Energy"!

- Total mass $\simeq 6 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 4 \times$ mass density
- About 70% of total mass/energy density in form of "Dark Energy"!
- Confirmed by observations of distant supernovae

- Total mass $\simeq 6 \times$ mass of "ordinary" (baryonic) matter
- Universe is flat (euclidian)
 \implies total energy density $\simeq 4 \times$ mass density
- About 70% of total mass/energy density in form of "Dark Energy"!
- Confirmed by observations of distant supernovae
- Expansion of Universe is accelarating: Dark Energy has "negative pressure"!

Composition of the Universe

25% non-baryonic DM

In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)
In this room

1 ℓ contains:

- Ca. 1 g baryonic matter (air)
- Ca. 10^{-20} g Dark Matter (DM)

In this room

1 ℓ contains:

- Ca. 1 g baryonic matter (air)
- **Solution** Ca. 10^{-20} g Dark Matter (DM)
- **Solution** Ca. 10^{-25} g–equivalent Dark Energy (DE)

Has no electromagnetic interaction

- Has no electromagnetic interaction
- Has normal gravitational interaction

- Has no electromagnetic interaction
- Has normal gravitational interaction
- Clumps on length skales $\geq 10^3$ ly

- Has no electromagnetic interaction
- Has normal gravitational interaction
- Clumps on length skales $\geq 10^3$ ly
- Cannot consist of normal (baryonic) matter

- Has no electromagnetic interaction
- Has normal gravitational interaction
- Clumps on length skales $\geq 10^3$ ly
- Cannot consist of normal (baryonic) matter
- Strong evidence for existence of exotic particles!

- Has no electromagnetic interaction
- Has normal gravitational interaction
- Clumps on length skales $\geq 10^3$ ly
- Cannot consist of normal (baryonic) matter
- Strong evidence for existence of exotic particles!
- Particle physicists have suggested many candidates

Total baryon density is determined by:

Big Bang Nucleosynthesis

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\implies \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes:

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\implies \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes:

Not easy to make in sufficient quantity sufficiently early (?)

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes:

- Not easy to make in sufficient quantity sufficiently early (?)
- Microlensing searches (EROS, MACHO, OGLE) excludes
 $10^{-7}M_{\odot} ≤ M_{bh} ≤ 1M_{\odot}$ as major part of our halo.

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes:

- Not easy to make in sufficient quantity sufficiently early (?)
- Microlensing searches (EROS, MACHO, OGLE) excludes
 $10^{-7}M_{\odot} ≤ M_{bh} ≤ 1M_{\odot}$ as major part of our halo.
- For bh's to form "fluid": need $M_{
 m bh} \lesssim 10^3 M_{\odot}$

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and has (strongly) suppressed coupling to elm radiation

It does not only come from WMAP data!

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this!

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this! E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732 [gr-qc], arXiv:0709.2535 [astro-ph], explains accelerated expansion in inhomogeneous universe: finds $\Omega_{\rm DM} = 3.1^{+1.8}_{-1.1}\Omega_{\rm baryon}$.

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this! E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732 [gr-qc], arXiv:0709.2535 [astro-ph], explains accelerated expansion in inhomogeneous universe: finds $\Omega_{\rm DM} = 3.1^{+1.8}_{-1.1}\Omega_{\rm baryon}$.

E.g. Ferreras, Sakellariadou, Yusaf, arXiv:0709.3189 [astro-ph]: Strong lensing implies that even MOND needs galactic DM!

Observation of merging cluster 1E0657-56 ("bullet cluster"):

Using X-rays (CHANDRA): observes hot (baryonic) gas

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter

Observation of merging cluster 1E0657-56 ("bullet cluster"):

- Using X-rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but not the Dark Matter Resulting bound on DM–DM scattering cross section constrains models of interacting DM! Markevitch et al.,

astro-ph/0309303

Bullet cluster

• Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve "cusp problem"

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve "cusp problem"
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve "cusp problem"
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re-ionization of Universe (no longer a problem?)

Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or "cool") DM: can solve "cusp problem"
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re-ionization of Universe (no longer a problem?)
- Are unstable!

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta$$

$$B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta \qquad \qquad B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Crossed version of left diagram contributes to production: $\nu_i + f \rightarrow \nu_s + f; \quad \nu_i + f \rightarrow \nu_s + f'$

Decays of "sterile" neutrinos

$$\Gamma(\nu_s) = \frac{G_F^2 m_s^5}{192\pi^3} \sin^2 \theta \qquad \qquad B(\nu_s \to \gamma \nu_i) \simeq 1\%$$

Crossed version of left diagram contributes to production: $\nu_i + f \rightarrow \nu_s + f; \quad \nu_i + f \rightarrow \nu_s + f'$

Right diagram gives only way to detect ν_s : monochromatic (X–ray) photon at $E_{\gamma} = m_{\nu_s}/2$.

Standard sterile neutrinos are excluded!

Viel et al., astro-ph/0605706

Standard sterile neutrinos are excluded!

Viel et al., astro-ph/0605706

Loophole: Use non-standard production mechanism: large lepton asymmetry ($\Delta L \sim 0.1$), ν_s coupling to inflaton, ...

Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

Well motivated candidates exist: gravitino, axino

Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms:

Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms:
 - Thermal production: E.g. $g + g \rightarrow \tilde{g} + (\tilde{G} \text{ or } \tilde{a})$: $\Omega_{\tilde{G}}h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$ T_R : re-heat temperature of Universe

Super_/E_WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms:
 - Thermal production: E.g. $g + g \rightarrow \tilde{g} + (\tilde{G} \text{ or } \tilde{a})$: $\Omega_{\tilde{G}}h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$ T_R : re-heat temperature of Universe • From NLSP decay: E.g. $\tilde{\tau}_1 \rightarrow \tau + \tilde{G}$ or \tilde{a} : $\Omega_{\tilde{G} \text{ or } \tilde{a}}h^2 = \tilde{\Omega}_{\text{NLSP}}h^2 \frac{m_{\tilde{G} \text{ or } \tilde{a}}}{m_{\text{NLSP}}}$

Super-/E-WIMPs (cont.d)

■ NLSP \rightarrow (\tilde{G} or \tilde{a}) + X decays tend to mess up BBN: nearly as problematic as inverse decays

Super-/E-WIMPs (cont.d)

- NLSP \rightarrow (\tilde{G} or \tilde{a}) + X decays tend to mess up BBN: nearly as problematic as inverse decays
- DM Super-/E-WIMPs cannot be detected

Super-/E-WIMPs (cont.d)

- NLSP \rightarrow (\tilde{G} or \tilde{a}) + X decays tend to mess up BBN: nearly as problematic as inverse decays
- DM Super-/E-WIMPs cannot be detected
- Allow charged NLSP, e.g. $\tilde{\tau}_1$. However, BBN requires $\tau_{\tilde{\tau}_1} < 2 \cdot 10^3$ s (catalyzed Li overproduction): Can still see $\tilde{\tau}_1$ tracks, but cannot collect $\tilde{\tau}_1$.

WIMPs

 Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))

WIMPs

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

WIMPs

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with *T*-Parity), ((Universal Extra Dimension))
- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both *direct* and *indirect* detection of WIMPs

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

WIMP production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{\rm ann} = \sigma(\chi \chi \to {\rm SM \ particles})$ v: relative velocity between χ 's in their cms $n_{\chi,\,{\rm eq}}: \chi$ density in full equilibrium

Assume χ was in full thermal equilibrium after inflation.

Assume χ was in full thermal equilibrium after inflation.

Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_{\chi} h^2 \propto \frac{1}{\langle v \sigma_{\rm ann} \rangle} \sim 0.1 \text{ for } \sigma_{\rm ann} \sim \mathsf{pb}$$

Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one-step unification of gauge couplings

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S-matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one-step unification of gauge couplings
- In simplest (R_p-invariant) version: LSP is stable: can be good candidate for DM particle! (Free bonus, not related to original motivation.)

mSUGRA, $m_t = 172.7$ **GeV,** $\tan \beta = 10, A_0 = 0, \mu > 0$

Djouadi, MD, Kneur, hep-ph/0602001

Effect of varying $\tan \beta$

Indirect WIMP detection

WIMPs are everywhere!

Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:

Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies
 - Inside the Sun or Earth

Slow \bar{p} , fast e^+ : background? Propagation?

- Slow \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \overline{d} : Propagation?
- Photons: Background?

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate
- \bar{p}, e^+ : Will be studied by PAMELA; first results soon!

- **Slow** \bar{p} , fast e^+ : background? Propagation?
- **Slow** \bar{d} : Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

 \bar{p}, e^+ : Will be studied by PAMELA; first results soon!

Photons: To be studied by GLAST: Launch in February 2008!

WIMPs are everywhere!

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N

• Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: $\chi + N \rightarrow \chi + N$ Measured quantity: recoil energy of N
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from β, γ events; neutron screening; ...
- Is being pursued vigorously around the world!

Searching for particle DM

Direct search: need shielding!

Searching for particle DM

Direct search: need shielding!

Searching for particle DM

Direct search: need shielding!

May also be testable at colliders

ATLAS detector at the LHC

Other DM Candidates

• Axions: Are very light ($m_a \sim \mu eV$ to meV) pseudoscalar particles. Offer solution of "strong CP problem". Are produced non-thermally in QCD phase transition. Can be detected through $a \rightarrow \gamma$ conversion.

Other DM Candidates

- Axions: Are very light ($m_a \sim \mu \text{eV}$ to meV) pseudoscalar particles. Offer solution of "strong CP problem". Are produced non-thermally in QCD phase transition. Can be detected through $a \rightarrow \gamma$ conversion.
- MeV DM: Very light WIMP, with very weak interactions. Motivated by interpreting excess of 511 keV photons from central region of our galaxy in terms of $\chi \chi \rightarrow e^+e^-$. Cannot be detected, but model needs additional exchange particles, which can be produced at colliders.

Other DM Candidates

- Axions: Are very light ($m_a \sim \mu \text{eV}$ to meV) pseudoscalar particles. Offer solution of "strong CP problem". Are produced non-thermally in QCD phase transition. Can be detected through $a \rightarrow \gamma$ conversion.
- MeV DM: Very light WIMP, with very weak interactions. Motivated by interpreting excess of 511 keV photons from central region of our galaxy in terms of $\chi \chi \rightarrow e^+e^-$. Cannot be detected, but model needs additional exchange particles, which can be produced at colliders.
- Superheavy DM: Assumed to be unstable, with $\tau_{\chi} \sim 10^{17}$ yrs. Motivated by attempt to explain UHECR. Produced in very early universe, probably non-thermally. Recent UHECR data (AUGER) seem to disfavor this scenario.

Dark Matter

 Existence confirmed by many independent observations

- Existence confirmed by many independent observations
- Can be explained using established particle physics methods

- Existence confirmed by many independent observations
- Can be explained using established particle physics methods
- Direct and/or indirect detection of DM particles may be feasible

- Existence confirmed by many independent observations
- Can be explained using established particle physics methods
- Direct and/or indirect detection of DM particles may be feasible
- Further tests at the LHC possible in many models