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Introduction: WIMPs as Dark Matter

fSeveral observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

-

# Galactic rotation curves imply Qpyh? > 0.05.

(2: Mass density in units of critical density; {2 = 1 means flat

Universe.
h: Scaled Hubble constant. Observation: h = 0.72 £ 0.07 (?)

#® Models of structure formation, X ray temperature of
clusters of galaxies, ...

#» Cosmic Microwave Background anisotropies (WMAP)

Imply QDM}LQ — 01051_88(1)5 Spergel et al., astro—ph/0603449
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Weakly Interacting Massive Particles (WIMPSs)
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# Exist in well-motivated extensions of the SM: SUSY,
(Little Higgs with T—Parity), ((Universal Extra
Dimension))
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Weakly Interacting Massive Particles (WIMPSs)

-

Exist in well-motivated extensions of the SM: SUSY,
(Little Higgs with T—Parity), ((Universal Extra
Dimension))

Can also (trivially) write down “tailor-made” WIMP
models

In standard cosmology, roughly weak cross section
automatically gives roughly right relic density for
thermal WIMPs! (On logarithmic scale)

Roughly weak interactions may allow both indirect and
direct detection of WIMPs
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» WIMPs are everywhere!

# Can elastically scatter on nucleus in detector:
X+N—=x+N
Measured quantity: recoil energy of N

o |

WIMP Distribution and Mass — p. 5/33



Direct WIMP detection
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» WIMPs are everywhere!

# Can elastically scatter on nucleus in detector:
Y+N —-xy+N
Measured quantity: recoil energy of N

# Detection needs ultrapure materials in
deep—-underground location; way to distinguish recoils
from 3, ~ events; neutron screening; ...
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Direct WIMP detection

WIMPs are everywhere! T

Can elastically scatter on nucleus in detector:
X+N—=x+N
Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep—-underground location; way to distinguish recoils
from 3, ~ events; neutron screening; ...

Is being pursued vigorously around the world!
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Direct WIMP detection: theory

e | N

Counting rate glven by
dQ = AF*(Q) f:;ix @dv
(). recoil energy
A= poy/(2m,m,) = const.: encodes particle physics
F'(()): nuclear form factor
v: WIMP velocity in lab frame
Umin = MNQ/(2my)
Umax. Maximal velocity if WIMPSs bound to galaxy
f1(v): normalized one—dimensional WIMP velocity distribution

- )2 2 * do 1 do
Note: () oc v*(1 — cos ") = 75 o 5775
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Direct WIMP detection: theory

-

Counting rate given by
dQ = AF*(Q) f:ﬁx @dv
(). recoil energy
A= poy/(2m,m,) = const.: encodes particle physics
F'(()): nuclear form factor
v: WIMP velocity in lab frame
Umin = MNQ/(2my)
Umax. Maximal velocity if WIMPSs bound to galaxy
f1(v): normalized one—dimensional WIMP velocity distribution

- )2 2 * do 1 do
Note: () oc v*(1 — cos ") = 75 o 5775

In principle, can invert this relation to measure f(v)!
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Why bother?

f.p Allows to test models of galaxy formation: might shed T
new light on “CDM crises”

# Might teach us something about merger history of our
own galaxy (e.g. if tidal stream Is detected)

#» Necessary to check whether this WIMP forms all (local)
DM
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Direct reconstruction of f;

- N

filv) = { %@ Q[ 1@) Zg”cgzm%v?/mw

N Normalization (" fi(v)dv = 1).

Need to know form factor —- stick to spin—independent
scattering.

Need to know m,, but do not need oy, p.

Need to know slope of recoll spectrum!

dR/d(Q) 1s approximately exponential: better work with
logarithmic slope

IMP Distribution an



Determining the logarithmic slope ofdR/d()
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# Good local observable: Average energy transfer (Q); in
i—th bin
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Determining the logarithmic slope ofdR/d(Q)

- N

# Good local observable: Average energy transfer (Q); in
i—th bin

# Stat. error on slope « (bin width)~!> = need large
bins

# To maximize information: use overlapping bins
(“windows”)
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Recoll spectrum: prediction and simulated measurement
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500 events, 5 bins, up to 3 bins per window
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Recoll spectrum: prediction and simulated measurement
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5,000 events, 10 bins, up to 4 bins per window
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Probability

Statistical exclusion of constantf;

Average over 1,000 experiments
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Statistical exclusion of constantf;

Average over 1,000 experiments
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LNeed several hundred events to begin direct reconstruction!J
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Determining moments of f;
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(n— 1 2 1 dR
x o~ @ / Q) a1
(n—1)/2
7 Zevents a Fa2(Qa)

Can incorporate finite energy (hence velocity) threshold
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Determining moments of f;

o .

fooo nfl
(n—1) 2 1 dR
x Jo~ @ / Q) a1
(n—1)/2
7 Zeventsa Fa2(Qa)

Can incorporate finite energy (hence velocity) threshold
Moments are strongly correlated!

High moments, and their errors, are underestimated In
“typical” experiment: get large contribution from large @
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Determination of first 10 moments
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Constraining a “late infall” component
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Constraining a “late infall” component
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® Needed to check if DM WIMP iIs same as collider WIMPT

#» Method described above yields normalized f;(v) for any
assumed m,,
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Determining the WIMP mass

Needed to check if DM WIMP Is same as collider WIMP—‘

Method described above yields normalized f;(v) for any
assumed m,,

= cannot determine m, from single recoll spectrum,
unless fi(v) Is (assumed to be) known

Can determine m, model-independently from two (or
more) measurement, by demanding that they yield the
same (moments of) f;!
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Determining the WIMP mass

Needed to check if DM WIMP Is same as collider WII\/IPT

Method described above yields normalized f;(v) for any
assumed m,,

= cannot determine m, from single recoll spectrum,
unless fi(v) Is (assumed to be) known

Can determine m, model-independently from two (or

more) measurement, by demanding that they yield the
same (moments of) f;!

Can also get m, from comparison of event rates,
assuming equal cross section on neutrons and protons.
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Formalism
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Formalism
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Selecting target materials

Contours of constant k/ mX
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Selecting target materials

Contours of constant k/ mX

Target nuclei should have quite different masses, preferably
Lbracketing WIMP mass J
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Systematic errors
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o Equality of moments of f; holds only if integrals run
over identical ranges of v, €.g. vmin = 0, Umax = 0.
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Systematic errors

- N

# Equality of moments of f; holds only if integrals run
over identical ranges of v, €.g. vmin = 0, Umax = 0.

#» Real experiments have finite acceptance windows for
(), and hence for v

» Ensuring Umin,X = Umin,Y and Umax,X = Umax,Y Only
possible if m, Is known
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Systematic errors

-

Equality of moments of f; holds only if integrals run
over identical ranges of v, €.g. vmin = 0, Umax = 0.

Real experiments have finite acceptance windows for
(), and hence for v

Ensuring Umin,X = Umin,Y and Umax,X — Umax,Y Only
possible if m, Is known

For vmin: Systematic effect not very large if m, = 20
GeV, Qmin <3 KkeV, Qmin x = Qmin,y terms included in 7,,.
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Effect of )i, # 0
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Effect of )i, # 0

2 \ T T T T T T T T |
[ solid: including r(Q_.. ) terms ]
- dashed: without r(Q_. ) terms -
15+ black: Q . =10keV —
>E< I
& i
g - :
S ~JIT--_ 7
E L \\\\\ \\\~~__—
0.5F Rt
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QLO 100
m [GeV ]

Use Quin = 0 from now on.
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Effect of finite ().«
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even to region with (N.,) < 1



Effect of finite ().«

| N

#» (Higher) moments are very sensitive to high—Q region,
even to region with (N.,) < 1

# |mposing finite Q. can alleviate this problem,

| |

WIMP Distribution and Mass — p. 22/33



Effect of finite ().«

| .

#» (Higher) moments are very sensitive to high—Q region,
even to region with (N.,) < 1

# |mposing finite Q. can alleviate this problem,

# Dbut introduces systematic error unless ()...x values of
two targets are matched; matching depends on m,,.
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Median reconstructed WIMP mass: no cut on¢)

-

50 + 50 events, Si and Ge, standard halo, no cut on Q
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Median reconstructed WIMP mass: optimal (). matching

-
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50 + 50 events, Si and Ge, standard halo, optimally matched Q__ < 50 keV
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Median reconstructed WIMP mass: equal(,,.«
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Matching procedures

-

fIterative: m,.o0 used for matching — m, rec.1, US€d as new

iInput — ..

.. converges “on average”

Ge and Si, true m, = 100 GeV

1000

7]

[ | — 2x50events, QmaxGe=50keV
[ |-— 2x500events, Q_ -, =100keV

[GeV]

X,rec
=
o
o
T

median m
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Matching procedures

-

fIterative: m, .o used for matching — m, rec.1, USed as new

iInput — ..

.. converges “on average”

Ge and Si, true m, = 100 GeV

1000

I f— 2x50events,QmaxGe=50keV
[ |-— 2x500events, Q_ -, =100keV

[GeV]

X.rec

=
o
o
T

median m

—_
-

190

|
100

m i [GeV]

1000

Unfortunately, in given experi-
ment often leads to endless loop!
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Matching procedures

-

fIterative: my.0 used for matching — m, 1.1, USed as new

Input — ...: converges “on average”

Ge and Si, true m, = 100 GeV
10001y ——

[ | — 2 x50 events, QmaxG
|- - 2x500events, Q.= 100keV

e=50keV

Unfortunately, in given experi-

3
O, -
=~ 10 . - ment often leads to endless loop!
&
3
S

96— ow

mxyin[GeV]

Llnstead developed matching procedure based on total \? fitJ

WIMP Distribution and Mass — p. 26/33



Median reconstructed WIMP mass: y? matching

-

50 + 50 events, Si and Ge, standard halo, matched Q__ < 50 keV
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[GeV]

X.rec, hi, lo

Median reconstructed WIMP mass

50 + 50 events, Si and Ge, standard halo, Q__ < 100 keV

1000

100

10

T III\II \ \I

|
— — —
—
-

---------
—_—— — —
- —

------------------

-
o

1000

m_. [GeV]

X,in

|

WIMP Distribution and Mass — p. 28/33



Median reconstructed WIMP mass: non—standard halo

- N

50 + 50 events, Si and Ge, halo with 25% late infall, Q__ < 100 keV
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Comparison of corresponding recoil spectra

-

Getarget, m = 50 GeV
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Difference is smaller for larger m,
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[GeV]

X.rec, hi, lo

Median reconstructed WIMP mass

500 + 500 events, Si and Ge, standard halo, Q__ < 100 keV
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fraction of exptsin bin

Distribution of measurements

2 x 50 events, Si and Ge, standard halo, Q< 100 kev, m = 50 GeV

0.08llll|llll|llll|llll|llll

0.07

©
o
>

o © o o o
o
S 8 R 1
\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\

o
o
g

o Loy 11y

o

r
l-.l"'IIIIIIIII

noptimal Q__ matching

5 4 -3 2 -1

0

1 2 3 4

om

a1

fraction of exptsin bin

-

2 x 500 events, Si and Ge, standard halo, Q< 100 keV, m = 200 GeV

0.1 7: TTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTT I7

0.081~= —

- optimal Q. matching e

0.06 —

- algorithmic -

0.04 ; no Q, ., matching Qrax matclln ng ’

L III i

- I | -

,. 'J| | -

0.02. il I

Lo road | i

IJ|]|JL I

: ‘Y I| :

0 ].rH'FﬁTn‘Ii- IIJlLIIIIIJlLIIII IIILILI_L
-5 -1 0 1 2 3 4

om

WIMP Distribution and Mass — p. 32/33



-

0.08

0.07F

fraction of exptsin bin
o 9 o o o o
2 8B 8 B & 8

, O
LB N O

Distribution of measurements

2x 50 events, Si and Ge, standard halo, Q| SIS 100 keV, m = 50 GeV

fraction of exptsin bin

-

2 x 500 events, Si and Ge, standard halo, Qmax< 100 keV, m = 200 GeV

0.1

0.08

0.06

0.04

0.02}=:

om

— optimal Q__, matching g
- algorithmic -
~noQ__ matching Q. Matching -
= r —
|

L III ]
- I I -
- J| | .
=5 b : _
Lo d -
I r e ]
L ‘ rd I| i
]..ru+— IJAL IIJlLIIIIIJlLIIII IIILIIII
5 4 3 -2 -1 0 1 2 3 4

v? matching of Q.,.x Values obscures meaning of final error
estimate!

o

|

WIMP Distribution and Mass — p. 32/33



Summary: Learning from direct WIMP detection

- N

#® L|earning about our galaxy:

o |

WIMP Distribution and Mass — p. 33/33



Summary: Learning from direct WIMP detection

- N

# Learning about our galaxy:

s Direct reconstruction of f;(v) needs several hundred
events

o |

WIMP Distribution and Mass — p. 33/33



Summary: Learning from direct WIMP detection

f # |earning about our galaxy: T
s Direct reconstruction of f;(v) needs several hundred

events
» Non-trivial statements about moments of f; possible
with few dozen events

o |

WIMP Distribution and Mass — p. 33/33



Summary: Learning from direct WIMP detection

- N

#® L|earning about our galaxy:

s Direct reconstruction of f;(v) needs several hundred
events

» Non-trivial statements about moments of f; possible
with few dozen events

» Needs to be done to determine p,: required input for
learning about early Universe!

o |

WIMP Distribution and Mass — p. 33/33



Summary: Learning from direct WIMP detection

- N

#® L|earning about our galaxy:

s Direct reconstruction of f;(v) needs several hundred
events

» Non-trivial statements about moments of f; possible
with few dozen events

» Needs to be done to determine p,: required input for
learning about early Universe!

# Learning about WIMPs: Can determine m,, from

moments of f; measured with two different targets.
Issues regarding Qnax remain.

o |

WIMP Distribution and Mass — p. 33/33



Summary: Learning from direct WIMP detection
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#® L|earning about our galaxy:

s Direct reconstruction of f;(v) needs several hundred
events

» Non-trivial statements about moments of f; possible
with few dozen events

» Needs to be done to determine p,: required input for
learning about early Universe!

# Learning about WIMPs: Can determine m,, from

moments of f; measured with two different targets.
Issues regarding Qnax remain.

® Gives motivation to collect lots of direct WIMP
scattering events!
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