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4 Summary

Based on MD, C.–L. Shan, astro-ph/0703651, JCAP 0706, 011
(2007), and arXiv:0803.4477 [hep-ph] (JCAP, to appear).
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Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07 (?)

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.105+0.007

−0.013 Spergel et al., astro–ph/0603449
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Weakly Interacting Massive Particles (WIMPs)

Exist in well–motivated extensions of the SM: SUSY,
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Weakly Interacting Massive Particles (WIMPs)

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Can also (trivially) write down “tailor–made” WIMP
models

In standard cosmology, roughly weak cross section
automatically gives roughly right relic density for
thermal WIMPs! (On logarithmic scale)

Roughly weak interactions may allow both indirect and
direct detection of WIMPs

WIMP Distribution and Mass – p. 4/33



Direct WIMP detection

WIMPs are everywhere!

WIMP Distribution and Mass – p. 5/33



Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

WIMP Distribution and Mass – p. 5/33



Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

WIMP Distribution and Mass – p. 5/33



Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

Is being pursued vigorously around the world!
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vmax

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vmax: Maximal velocity if WIMPs bound to galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
Note: Q2 ∝ v2(1 − cos θ∗) ⇒ dσ

dQ
∝ 1

v2
dσ

d cos θ∗
.
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vmax

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vmax: Maximal velocity if WIMPs bound to galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
Note: Q2 ∝ v2(1 − cos θ∗) ⇒ dσ

dQ
∝ 1

v2
dσ

d cos θ∗
.

In principle, can invert this relation to measure f1(v)!
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Why bother?

Allows to test models of galaxy formation: might shed
new light on “CDM crises”

WIMP Distribution and Mass – p. 7/33



Why bother?

Allows to test models of galaxy formation: might shed
new light on “CDM crises”

Might teach us something about merger history of our
own galaxy (e.g. if tidal stream is detected)

WIMP Distribution and Mass – p. 7/33



Why bother?

Allows to test models of galaxy formation: might shed
new light on “CDM crises”

Might teach us something about merger history of our
own galaxy (e.g. if tidal stream is detected)

Necessary to check whether this WIMP forms all (local)
DM
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Direct reconstruction of f1

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN
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Direct reconstruction of f1

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN

N : Normalization (
∫ ∞
0 f1(v)dv = 1).

Need to know form factor =⇒ stick to spin–independent
scattering.
Need to know mχ, but do not need σ0, ρ.
Need to know slope of recoil spectrum!
dR/dQ is approximately exponential: better work with
logarithmic slope
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Determining the logarithmic slope ofdR/dQ

Good local observable: Average energy transfer 〈Q〉i in
i−th bin
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Determining the logarithmic slope ofdR/dQ

Good local observable: Average energy transfer 〈Q〉i in
i−th bin

Stat. error on slope ∝ (bin width)−1.5 =⇒ need large
bins

To maximize information: use overlapping bins
(“windows”)
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Recoil spectrum: prediction and simulated measurement
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Statistical exclusion of constantf1
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Need several hundred events to begin direct reconstruction!
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Determining moments off1

〈vn〉 ≡
∫ ∞
0 vnf1(v)dv
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Determining moments off1

〈vn〉 ≡
∫ ∞
0 vnf1(v)dv

∝
∫ ∞
0 Q(n−1)/2 1

F 2(Q)
dR
dQdQ

→ ∑

events a
Q

(n−1)/2
a

F 2(Qa)

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!

High moments, and their errors, are underestimated in
“typical” experiment: get large contribution from large Q
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Determination of first 10 moments
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Constraining a “late infall” component
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Determining the WIMP mass

Needed to check if DM WIMP is same as collider WIMP

WIMP Distribution and Mass – p. 17/33



Determining the WIMP mass

Needed to check if DM WIMP is same as collider WIMP

Method described above yields normalized f1(v) for any
assumed mχ

WIMP Distribution and Mass – p. 17/33



Determining the WIMP mass

Needed to check if DM WIMP is same as collider WIMP

Method described above yields normalized f1(v) for any
assumed mχ

⇒ cannot determine mχ from single recoil spectrum,
unless f1(v) is (assumed to be) known

WIMP Distribution and Mass – p. 17/33



Determining the WIMP mass

Needed to check if DM WIMP is same as collider WIMP

Method described above yields normalized f1(v) for any
assumed mχ

⇒ cannot determine mχ from single recoil spectrum,
unless f1(v) is (assumed to be) known

Can determine mχ model–independently from two (or
more) measurement, by demanding that they yield the
same (moments of) f1!

WIMP Distribution and Mass – p. 17/33



Determining the WIMP mass

Needed to check if DM WIMP is same as collider WIMP

Method described above yields normalized f1(v) for any
assumed mχ

⇒ cannot determine mχ from single recoil spectrum,
unless f1(v) is (assumed to be) known

Can determine mχ model–independently from two (or
more) measurement, by demanding that they yield the
same (moments of) f1!

Can also get mχ from comparison of event rates,
assuming equal cross section on neutrons and protons.
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Formalism
〈vn〉 = αn(n + 1)

In

I0

α =
√

mN

2m2
red,N

, In =
∫

∞

0
Q(n−1)/2

F 2(Q)
dR
dQ

dQ
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Formalism
〈vn〉 = αn(n + 1)

In

I0

α =
√

mN

2m2
red,N

, In =
∫

∞

0
Q(n−1)/2

F 2(Q)
dR
dQ

dQ

⇒ mχ =

√
mXmY − mXRn

Rn −
√

mX/mY

, Rn ≡ αY

αX
=

In,XI0,Y

In,Y I0,X
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Formalism
〈vn〉 = αn(n + 1)

In

I0

α =
√

mN

2m2
red,N

, In =
∫

∞

0
Q(n−1)/2

F 2(Q)
dR
dQ

dQ

⇒ mχ =

√
mXmY − mXRn

Rn −
√

mX/mY

, Rn ≡ αY

αX
=

In,XI0,Y

In,Y I0,X

⇒ σ(mχ)|〈vn〉 ∝ Rn

√

mX/mY |mX − mY |
(

Rn −
√

mX/mY

)2

∝ (mχ + mX)(mχ + mY )

|mX − mY |
≡ κ
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Selecting target materials
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Target nuclei should have quite different masses, preferably
bracketing WIMP mass
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Systematic errors

Equality of moments of f1 holds only if integrals run
over identical ranges of v, e.g. vmin = 0, vmax = ∞.
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Systematic errors

Equality of moments of f1 holds only if integrals run
over identical ranges of v, e.g. vmin = 0, vmax = ∞.

Real experiments have finite acceptance windows for
Q, and hence for v

Ensuring vmin,X = vmin,Y and vmax,X = vmax,Y only
possible if mχ is known

WIMP Distribution and Mass – p. 20/33



Systematic errors

Equality of moments of f1 holds only if integrals run
over identical ranges of v, e.g. vmin = 0, vmax = ∞.

Real experiments have finite acceptance windows for
Q, and hence for v

Ensuring vmin,X = vmin,Y and vmax,X = vmax,Y only
possible if mχ is known

For vmin: Systematic effect not very large if mχ >∼ 20

GeV, Qmin <∼ 3 keV, Qmin,X = Qmin,Y terms included in In.

WIMP Distribution and Mass – p. 20/33



Effect of Qmin 6= 0
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Use Qmin = 0 from now on.
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Effect of finite Qmax

(Higher) moments are very sensitive to high−Q region,
even to region with 〈Nev〉 < 1
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Effect of finite Qmax

(Higher) moments are very sensitive to high−Q region,
even to region with 〈Nev〉 < 1

Imposing finite Qmax can alleviate this problem,

but introduces systematic error unless Qmax values of
two targets are matched; matching depends on mχ.

WIMP Distribution and Mass – p. 22/33



Median reconstructed WIMP mass: no cut onQ
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Median reconstructed WIMP mass: optimalQmax matching
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Median reconstructed WIMP mass: equalQmax
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Matching procedures

Iterative: mχ,0 used for matching → mχ,rec,1, used as new
input → . . . : converges “on average”
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Matching procedures

Iterative: mχ,0 used for matching → mχ,rec,1, used as new
input → . . . : converges “on average”
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2 x 50 events, Q
max,Ge

 = 50 keV

2 x 500 events, Q
max,Ge

 = 100 keV

Ge and Si, true mχ = 100 GeV

Unfortunately, in given experi-
ment often leads to endless loop!

Instead developed matching procedure based on total χ2 fit

WIMP Distribution and Mass – p. 26/33



Median reconstructed WIMP mass:χ2 matching

10 100 1000
mχ,in

 [GeV]

1

10

100

1000

m
χ,

re
c,

 h
i, 

lo
  [

G
eV

]

50 + 50 events, Si and Ge, standard halo, matched Q
max

 < 50 keV

n = -1

n = 1

n = 2

σ

tot

WIMP Distribution and Mass – p. 27/33



Median reconstructed WIMP mass
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Median reconstructed WIMP mass: non–standard halo
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Comparison of corresponding recoil spectra
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Difference is smaller for larger mχ
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Median reconstructed WIMP mass
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Distribution of measurements
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Distribution of measurements
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χ2 matching of Qmax values obscures meaning of final error
estimate!
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Summary: Learning from direct WIMP detection

Learning about our galaxy:
Direct reconstruction of f1(v) needs several hundred
events
Non–trivial statements about moments of f1 possible
with few dozen events
Needs to be done to determine ρχ: required input for
learning about early Universe!

Learning about WIMPs: Can determine mχ from
moments of f1 measured with two different targets.
Issues regarding Qmax remain.

Gives motivation to collect lots of direct WIMP
scattering events!
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