Abundance of cold relics in non-standard cosmological scenarios

Mitsuru Kakizaki (Bonn Univ.)

April 26, 2007 @ Bielefeld Univ.

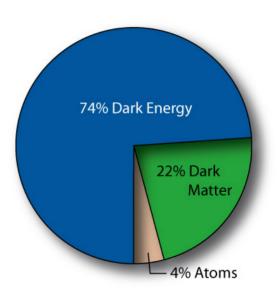
In collaboration with Manuel Drees and Hoernisa Iminniyaz

Refs:

- PRD73 (2006) 123502 [hep-ph/0603165]
- arXiv:0704.1590 [hep-ph]

1. Motivation

- Observations of
 - cosmic microwave background
 - large-scale structure of the universe
 - etc.



[http://map.gsfc.nasa.gov]

Non-baryonic cold dark matter (CDM): $0.8 < \Omega_{\rm CDM} h^2 < 0.12~(95\%~{\rm CL})$

- Neutral, stable (long-lived) weakly interacting massive particles (WIMPs) χ are good candidates for CDM
 - Neutralino (LSP); 1st KK mode of the B boson (LKP); etc.

When WIMPs were in full thermal eq., the relic abundance naturally falls around the observed CDM abundance: $\Omega_{\chi, {
m standard}} h^2 \sim 0.1$

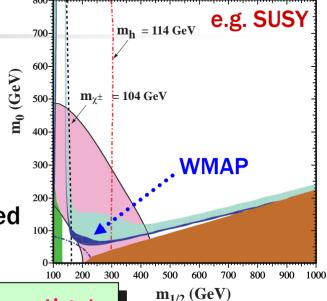
Investigation of early universe using CDM abundance

 The relic abundance of thermal WIMPs is determined by the Boltzmann equation:

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma_{\text{eff}} v \rangle (n_{\chi}^2 - n_{\chi,\text{eq}}^2)$$

and the maximal temperature T_0 of RD epoch

ullet The (effective) cross section $\sigma_{
m eff}$ can be determined from collider and DM detection experiments



m_{1/2} (GeV) [From Ellis et al., PLB565 (2003) **1**76]

We can test the standard CDM scenario and investigate the conditions of very early universe: T_0, H, \cdots

- Standard scenario:
 - χ was in chemical eq. $\Omega_{\chi}h^2$ is independent of T_0
 - ullet $H=rac{\pi T^2}{M_{
 m Pl}}\sqrt{rac{g_*}{90}}$ (g_* : Rel. dof)
- Non-standard scenarios:
 - Low reheat temperature
 - Entropy production
 - Modified Hubble parameter PRD(2003); Chung et
 - Non-thermal production
 Mitsuru Kakizaki

[Scherrer et al., PRD(1985); Salati,PLB(2003); Fernengo et al., PRD(2003); Chung et al., PRD (1999); ...]

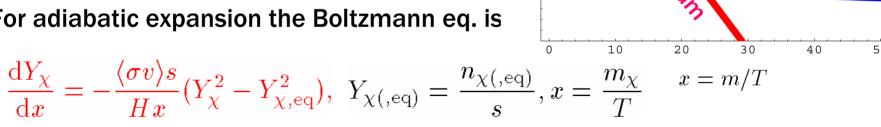
Outline

- We provide an approximate analytic treatment that is applicable to low-maximal-temperature scenarios
- Based on the assumption of CDM = thermal WIMP
 - we derive the lower bound on the maximal temperature of RD epoch
 - we constrain possible modifications of the Hubble parameter
- 1. Motivation
- 2. Standard calculation of WIMP relic abundance
- 3. Low-temperature scenario
- 4. Constrains on the very early universe from WIMP dark matter
- 5. Summary

2. Standard calculation of the WIMP relic abundance

[Scherrer, Turner, PRD33(1986)]

- Conventional assumptions for χ :
 - $\chi = \bar{\chi}$, single production of χ is forbidden
 - Thermal equilibrium was maintained
- For adiabatic expansion the Boltzmann eq. is



Co-moving number density

lacksquare Increasing $\langle \sigma v
angle$

Decoupling

ullet During the RD epoch, χ and decoupled when they were non-relativistic:

$$\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2), \quad n_{\chi, eq} = g_{\chi} (m_{\chi} T/2\pi)^{3/2} e^{-m_{\chi}/T}$$

$$\Omega_{\chi, \text{standard}} h^2 \simeq 0.1 \times \left(\frac{a + 3b/x_F}{10^{-9} \text{ GeV}^{-2}} \right)^{-1} \left(\frac{x_F}{22} \right) \left(\frac{g_*}{90} \right)^{-1/2} \sim \Omega_{\text{CDM}} h^2$$

April 26, 2006 Mitsuru Kakizaki

3. Low-temperature scenario

ullet T_0 : The maixmal temperature of the RD epoch

The initial abundance is assumed to be negligible: $Y_{\chi}(x_0) = 0$

• Zeroth order approximation:

 $T_0 < T_F \longrightarrow \chi$ annihilation is negligible:

$$\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_{*}^{-3/2} m_{\chi} M_{\text{Pl}} e^{-2x} x \left(a + \frac{6b}{x} \right)$$

The solution is proportional to the cross section:

At late times,

$$Y_0(x \gg x_0) \simeq 0.014 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\text{Pl}} e^{-2x_0} x_0 \left(a + \frac{6b}{x_0} \right)$$

This solution should be smoothly connected to the standard result

First order approximation

- Add a correction term describing annihilation to Y_0 : $Y_1 = Y_0 + \delta \; (\delta < 0)$
- ullet As long as $|\delta| \ll Y_0 \,$, the evolution equation for $\delta \,$ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_{\chi} M_{\rm PL} \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}$$

 \Longrightarrow The solution is proportional to $\,\sigma^3$

At late times,

$$\delta(x \gg x_0) \simeq -2.5 \times 10^{-4} \ g_{\chi}^4 g_{*}^{-5/2} m^3 M_{\rm Pl}^3 e^{-4x_0} x_0 \left(a + \frac{3b}{x_0} \right) \left(a + \frac{6b}{x_0} \right)^2$$

- ullet | δ | soon dominates over Y_0 for not very small cross section
 - $\longrightarrow Y_1$ fails to track the exact solution

Re-summed ansatz

- It is noticed that $Y_0 \propto \sigma > 0$, $\delta \propto \sigma^3 < 0$ For large cross section, $Y_{\chi}(x \to \infty)$ should be $\propto 1/\langle \sigma v \rangle$
- This observation suggests the re-summed ansats:

$$Y(x) = Y_0 + \delta = Y_0 \left(1 + \frac{\delta}{Y_0} \right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

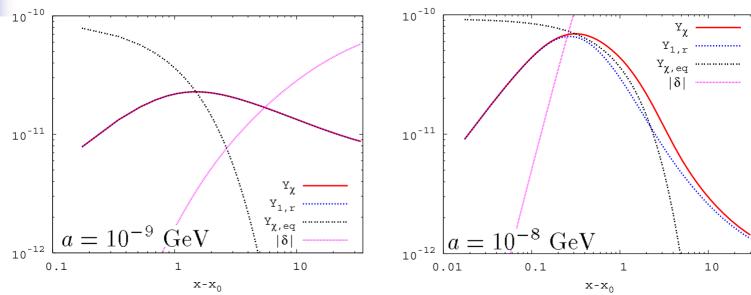
$$ullet$$
 For $|\delta|\gg Y_0$, $Y_{1,r}(x)\simeq -rac{Y_0^2}{\delta}\propto rac{1}{\sigma}$

For
$$|\delta|\gg Y_0$$
, $Y_{1,r}(x)\simeq -\frac{1}{\delta}\propto \frac{1}{\sigma}$ $x_0\to x_F$ Standard formula At late times, $Y_{1,r}(x\to\infty)=\frac{x_0}{1.3\,\sqrt{g_*}m_\chi M_{\rm Pl}(a+3b/x_0)}$

• In the case where χ production is negligible but the initial abundance is sizable, $Y_{1,r}$ is exact

> Mitsuru Kakizaki April 26, 2006

Evolution of solutions



 Y_χ : Exact result, $Y_{1,r}$: Re-summed ansatz, $b=0, \ Y_\chi(x_0=22)=0$

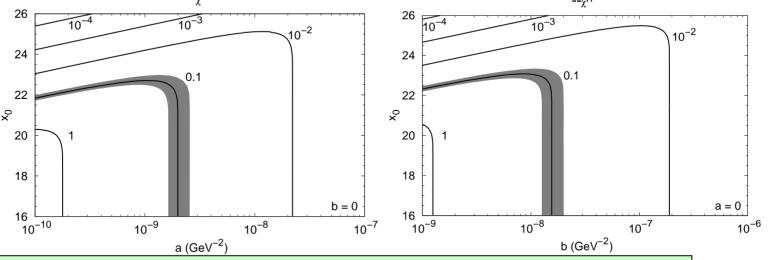
- ullet The re-summed ansatz $Y_{1,r}$ describes the full temperature dependence of the abundance when equilibrium is not reached
- For larger cross section the deviation becomes sizable for $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

4. Constrains on the very early universe from WIMP DM

• Out-of-equilibrium case: $\sigma \nearrow \longrightarrow \Omega h^2 \nearrow$; $T_0 = m_\chi/x_0 \nearrow \longrightarrow \Omega h^2 \nearrow$ Equilibrium case: $\sigma \nearrow \longrightarrow \Omega h^2 \searrow$; Ωh^2 Independent of T_0

• Thermal relic abundance in the RD universe:

$$0.8 < \Omega_{
m CDM} h^2 < 0.12$$



Assumption that $\Omega_{\mathrm{CDM}} h^2 = \Omega_{\chi,\mathrm{thermal}} h^2$,

Lower bound on the maximal temperature: $T_0 > m_\chi/23$

Modified expansion rate

- Various cosmological models predict a non-standard early expansion
 - Predicted WIMP relic abundances are also changed
- When WIMPs were in full thermal equilibrium, in terms of the modification parameter $A(x)=H_{\rm st}(x)/H(x)$ the relic abundance is

$$\Omega_{\chi} h^{2} = 0.1 \left(\frac{I(x_{F})}{8.5 \times 10^{-10} \text{ GeV}^{-2}} \right)^{-1}$$

$$I(x_{F}) = \int_{x_{F}}^{\infty} dx \frac{\sqrt{g_{*}} \langle \sigma v \rangle A(x)}{x^{2}}, \quad x_{F} = \ln \left[\sqrt{\frac{45}{\pi^{5}}} \xi m_{\chi} M_{\text{Pl}} g_{\chi} \frac{\langle \sigma v \rangle A(x)}{\sqrt{x g_{*}}} \right]_{x=x_{F}}$$

If A(x) = 1, $x_F = x_{F, st}$ and we recover the standard formula

This formula is capable of predicting the final relic density correctly

Constrains on modifications of the Hubble parameter

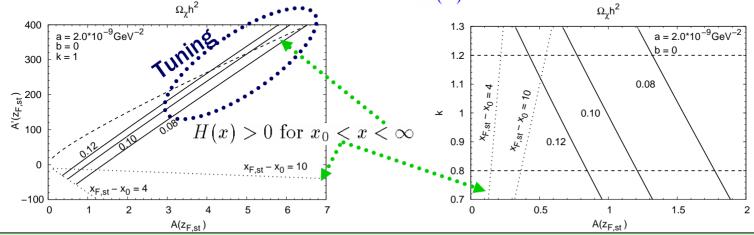
- In terms of $z\equiv \frac{T}{m_\chi}=\frac{1}{x}$, we need to know A(z) only for $z\leq z_F\sim 1/20\ll \mathcal{O}(1)$
- This suggests a parameterization of A(z) in powers of $(z-z_{F,\mathrm{st}})$:

$$A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + \frac{1}{2}(z - z_{F,st})^2 A''(z_{F,st})$$

subject to the BBN limit: $0.8 \le k \equiv A(z \to 0) \le 1.2$

[Olive et al., AP(1999); Lisi et al., PRD(1999); Cyburt et al., AP(2005)]

ullet Once we know σ , we can constrain A(z):



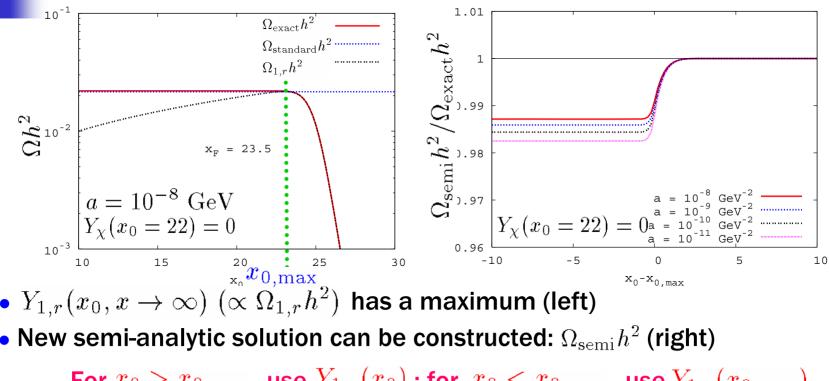
 $\Omega_{\chi}h^2$ depends on all $H(T_{\rm BBN} < T < T_F)$ Larger allowed region for $H(T_F)$

5. Summary

- Using the CDM relic density we can examine very early universe around $T \sim m_\chi/20 \sim \mathcal{O}(10)~{
 m GeV}$ (well before BBN $T_{
 m BBN} \sim \mathcal{O}(1)~{
 m MeV}$)
- The relic density of thermal WIMPs depends on the maximal temperature T_0 and on the Hubble parameter $H(T_{\rm BBN} < T < T_F)$
- We derived approximate solutions for the number density which accurately reproduce exact results when full thermal equilibrium is not achieved
- By applying $\,\Omega_{
 m CDM}h^2=\Omega_{\chi,{
 m thermal}}h^2$, we found the lower bound on the maximal temperature: $T_0>m_\chi/23$
- The sensitivity of $\,\Omega_{\chi, {
 m thermal}} h^2\,\,$ on $H(T_F)$ is weak because $\,\Omega_{\chi, {
 m thermal}} h^2\,\,$ depends on all $H(T_{
 m BBN} < T < T_F)$

Backup slides

Semi-analytic solution



- $Y_{1,r}(x_0,x\to\infty)$ $(\stackrel{\circ}{\propto}\Omega_{1,r}^{'}h^2)$ has a maximum (left)
- New semi-analytic solution can be constructed: $\Omega_{
 m semi} h^2$ (right)

For
$$x_0 > x_{0,\max}$$
 , use $Y_{1,r}(x_0)$; for $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi-analytic solution $\Omega_{\rm semi}h^2$ reproduces the correct final relic density $\Omega_{\rm exact}h^2$ to an accuracy of a few percent