Cosmological Constraint on the Minimal Universal Extra Dimension Model

Mitsuru Kakizaki (Bonn Univ. & ICRR, Univ. of Tokyo)

28 September, 2006 @ DESY

In collaboration with

- Shigeki Matsumoto (KEK)
- Yoshio Sato (Saitama Univ.)
- Masato Senami (ICRR, Univ. of Tokyo)

Refs:

- PRD 71 (2005) 123522 [hep-ph/0502059]
- NPB 735 (2006) 84 [hep-ph/0508283]
- PRD 74 (2006) 023504 [hep-ph/0605280]

1. Motivation

- Observations of
 - cosmic microwave background
 - structure of the universe
 - etc.

Non-baryonic cold dark matter

[http://map.gsfc.nasa.gov]

Today's topic

- Weakly interacting massive particles (WIMPs)
 - Correct relic abundance of CDM
 - Neutralino (LSP) in supersymmetric (SUSY) models
 - 1st KK mode of the B boson (LKP)

in universal extra dimension (UED) models

etc.

Mitsuru Kakizaki

28 September, 2006

2. Universal extra dimension (UED) models

Idea: All SM particles propagate in flat compact spatial extra dimensions

[Appelquist, Cheng, Dobrescu, PRD64 (2001) 035002]

• **Dispersion relation:** $E^2 = \vec{p}^2 + (p_5^2 + M^2)$

Momentum along the extra dimension

= Mass in four-dimensional viewpoint

• S^1 compactification with radius R: $p_5 = n/R$ $(n = 0, 1, 2, \cdots)$ is quantized \longrightarrow KK tower

Momentum conservation in the extra dimension
Conservation of KK number *n* at each vertex
28 September, 2006
Mitsuru Kakizaki

 $\star x^{\mu}$

Macroscopic

 M^4

1/R

Minimal UED (MUED) model

More

theory

fundamental

In order to obtain chiral zero-mode fermions, the extra dimension is compactified on an S^1/Z_2 orbifold

• Conservation of KK parity [+(-) for even (odd) n]

The lightest KK particle (LKP) is stable c.f. R-parity and LSP

The LKP is a good candidate for dark matter

• Only two new parameters appear in the MUED model:

R : Size of extra dimension Λ : Scale at which boundary terms vanish

The Higgs mass m_h remains a free parameter

Constraints coming from electroweak measurements are weak

 $R^{-1} > 500 \text{ GeV}$ for $m_h = 120 \text{ GeV}$ $R^{-1} > 250 \text{ GeV}$ for $m_h = 800 \text{ GeV}$

28 September, 2006

eV [Appelquist, Cheng, Dobrescu PRD64 (2001); eV Appelquist, Yee, PRD67 (2003); Gogoladze, Macesanu, hep-ph/0605207] Mitsuru Kakizaki 5

Mass spectra of KK states

3. Relic abundance of KK dark matter

Generic picture

- Dark matter particles were in thermal equilibrium in the early universe
- After the annihilation rate dropped below the expansion rate, the number density per comoving volume is almost fixed

4. Coannihilaition processes

Previous calculation:

 Inclusion of coannihilation modes with all 1st KK particles reduces the effective cross section [Burnell, Kribs, PRD73(2006); Kong, Matchev, JHEP0601(2006)]

• The Higgs mass is fixed to $m_h = 120 \text{ GeV}^{0.2}$

No resonance process is considered ⁿ_A

• We emphasize:

- The relic abundance depends on the SM Higgs mass
- Resonance effects also shift the allowed mass scale

0.3 **Disfavored** by **EWPT** MUED **WMAP** 0.1 $\Lambda R = 20, \ m_h = 120 \ \text{GeV}$ 0.0 500 250 750 0 1000 1250 1500 R^{-1} (GeV) [From Kong, Matchev, JHEP0601(2006)]

Relic abundance of the LKP

28 September, 2006

Mitsuru Kakizaki

Masses of the KK Higgs bosons

- Contour plot of mass splitting 1st KK Higgs boson masses: $m_{H^{(1)}}^2 = 1/R^2 + m_h^2 + \delta m_{H^{(1)}}^2$ $m_{H^{\pm(1)}}^2 = 1/R^2 + m_W^2 + \delta m_{H^{(1)}}^2$
 $$\begin{split} & {}_{^{(1)}} = 1/R^2 + m_Z^2 + om_{H^{(1)}} \\ & \delta m_{H^{(1)}}^2 = \left(\frac{3}{2}g_2^2 + \frac{3}{4}g'^2 - \lambda_H\right) \frac{1}{16\pi^2 R^2} \ln(\Lambda^2 R^2) \, \exp\left(\frac{1}{2} - \frac{1}{2} m_{rr(1)}^2\right) \\ & {}_{^{(1)}} = \frac{1}{2} - \frac{1}{2} m_{rr(1)}^2 + \frac{1}{2} \ln(\Lambda^2 R^2) \, \exp\left(\frac{1}{2} m_{rr(1)}^2\right) \\ & {}_{^{(1)}} = \frac{1}{2} - \frac{1}{2} m_{rr(1)}^2 + \frac{1}{2} \ln(\Lambda^2 R^2) \, \exp\left(\frac{1}{2} m_{rr(1)}^2\right) \\ & {}_{^{(1)}} = \frac{1}{2} - \frac{1}{2} m_{rr(1)}^2 + \frac{1}{2} \ln(\Lambda^2 R^2) \, \exp\left(\frac{1}{2} m_{rr(1)}^2\right) \\ & {}_{^{(1)}} = \frac{1}{2} - \frac{1}{2} m_{rr(1)}^2 + \frac{1}{2} \ln(\Lambda^2 R^2) \, \exp\left(\frac{1}{2} m_{rr(1)}^2\right) \\ & {}_{^{(1)}} = \frac{1}{2} - \frac{1}{2} m_{rr(1)}^2 + \frac{1}{2} m_$$
 $m_{A(1)}^2 = 1/R^2 + m_Z^2 + \delta m_{H(1)}^2$ $m_{H^{+}(1)}^2 < m_{A^{(1)}}^2 < m_{H^{(1)}}^2$ [Cheng, Matchev, Schmaltz, PRD66 (2002) 036005]
- Larger m_h

Larger
$$\lambda_H = m_h^2/v^2$$
; smaller δm_H^2

1/R (GeV) (Enhancement of the annihilation cross sections for the KK Higgs bosons)

• Too large m_h \longrightarrow The 1st KK charged Higgs boson is the LKP

Mitsuru Kakizaki

1500

 $(m_H^{\pm(1)} - m_{\gamma}^{(1)})/m_{\gamma}^{(1)}$

Charged LKP

0-5_%

1000

300

250

200

150

100

500

Allowed region without resonance processes

28 September, 2006

- We investigate dependence of the LKP relic abundance on the Higgs mass, including all coannihilation modes with 1st KK particles
- Bulk region (small m_h)

The result is consistent with previous works

• KK Higgs coannihilation region (large m_h)

 $\sigma(H^{\pm(1)}H^{\mp(1)} \to \mathrm{SM}) \gg \sigma(\gamma^{(1)}\gamma^{(1)} \to \mathrm{SM})$

The relic abundance decreases through the Higgs coannihilation

 \Rightarrow Larger R^{-1} is allowed

Mitsuru Kakizaki

5. Resonance processes

- KK particles are non-relativistic when they decouple
- (Incident energy of two 1st KK particles) \simeq (Masses of 2nd KK particles) $\sqrt{s} \simeq m^{(1)} + m^{(1)} \simeq m^{(2)}$
- Annihilation cross sections are enhanced through s-channel 2nd KK particle exchange at loop level
- Important processes:

$$\begin{array}{ccc} \gamma^{(1)}\gamma^{(1)} \to & H^{(2)} & \to \text{SM particles} \\ e^{(1)}\bar{e}^{(1)}, \nu(1)\bar{\nu}^{(1)} \to & Z^{(2)} & \to \text{SM particles} \\ e^{(1)}\bar{\nu}^{(1)} \to & W^{-(2)} & \to \text{SM particles} \\ A^{(1)}A^{(1)}, H^{+(1)}H^{-(1)} \to & H^{(2)} & \to \text{SM particles} \\ 28 \text{ September, 2006} & & & & & & & \\ \end{array}$$

Allowed region including coannihilation and resonance

 $0.089 \le \Omega h^2 \le 0.109;$ $0.079 \le \Omega h^2 \le 0.119$

- Cosmologically allowed region is shifted upward by 150 300 GeV
 - **Bulk region:** $W^{(2)}, Z^{(2)}$ -res. are effective
 - **KK** Higgs coannihilation region:

 $H^{(2)}$ -res. contributes as large as $W^{(2)}, Z^{(2)}$ -res.

 For R⁻¹ < 800 GeV the LKP may be the KK graviton
'KK graviton problem'

 Some mechanism to make the KK graviton heavy is proposed [Dienes PLB633 (2006)]

Mitsuru Kakizaki

UED models contain a candidate particle for CDM:

The 1st KK mode of the B boson (LKP)

In UED models

- $m_{\rm LKP} \simeq m^{(1)} \Longrightarrow$ Coannihilation -
- $\bullet \sqrt{s} \simeq m^{(1)} + m^{(1)} \simeq m^{(2)} \Longrightarrow \text{Resonance} -$

• We calculated the LKP relic abundance ²⁸⁰ in the MUED model including the resonance ²⁴⁰ processes in all coannhilation modes

Mitsuru Kakizaki

 Cosmologically allowed region in the MUED model

28 September, 2006

should be included