Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

Abundance of Cosmological Relics in Low–Temperature Scenarios

Mitsuru Kakizaki

Bonn Univ. & ICRR, Univ. of Tokyo

June 16, 2006

 Ref.: Manuel Drees, Hoernisa Iminniyaz and MK (Bonn Univ.), PRD73 (2006) 123502 [hep-ph/0603165]

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary Motivation This work Contents

1. Motivation

- Production of massive, long-lived or stable relic particles *χ* plays a crucial role in particle cosmology
- ► E.g.: weakly interacting massive particles (WIMPs)
 - may constitute most of the dark matter in the universe
 - may produce dark matter particles by the decays
- Standard picture of thermal WIMP production:
 - WIMPs were in chemical equilibrium in the radiation-dominated (RD) universe after inflation
 - The freeze–out temperature: $T_F \simeq m_\chi/20 \simeq {\cal O}(10)~{
 m GeV}$
 - The reheat temperature T_R is larger than T_F
- \blacktriangleright Cosmological observations establish the thermal history only for $1\mathcal{T} \lesssim \mathcal{O}(1)$ MeV
- Scenarios with low reheat temperature (T_R ≤ T_F) lowers the χ abundance and reopens the parameter space

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

This work

Motivation This work Contents

Existing treatments of thermal WIMP production:

- Full chemical equilibrium (Standard): $n_\chi \propto 1/\langle \sigma v \rangle$
- Complitely out of equilibrium (Y_0): $n_{\chi} \propto \langle \sigma v \rangle$

[Scherrer and Turner (1986); Giudice, Kolb and Riotto (2001), \cdots]

• We provide an approximate analytic treatment that is also applicable to the in-between case $(Y_{1,r})$

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary Motivation This work Contents

<u>Contents</u>

- 1. Motivation
- 2. Relic abundance in the standard cosmological scenario
- 3. Relic abundance in a low-temperature scenario
- 4. Relic abundance including the decay of heavier particles
- 5. Summary

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

Relic abundance in the standard cosmological scenario Standard cosmological scenario

2. Relic abundance in the standard cosmological scenario

 \blacktriangleright Let us consider a generic WIMP χ

 $(\chi = \bar{\chi}, \text{ single production of } \chi \text{ is forbidden})$

• The number density $n_{\chi} \leftarrow$ the Boltzmann equation:

 $\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi, \mathrm{eq}}^2)$

- ▶ $n_{\chi,eq}$: The number density of χ in equilibrium
- $H = \dot{R}/R$: The Hubble paremeter
- ⟨σν⟩: The thermal average of the annihilation cross section σ(χχ → SM particles) multiplied by relative velocity v
- Kinetic equilibrium is assumed to be maintained
 Γ(χf → χf)/Γ(χχ → ff) ~ 1/Y_χ = s/n_χ ≫ O(1)
 (f: some SM particle, s: Entopy density)

Motivation Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

Relic abundance in the standard cosmological scenario Standard cosmological scenario

Standard cosmological scenario

[Scherrer and Turner (1986)]

- Let us introduce $Y_{\chi(,\mathrm{eq})} = n_{\chi(,\mathrm{eq})}/s$ and $x = m_{\chi}/T$
- For addiabatic expansion, $sR^3 = \text{const.}$
- ▶ In the RD era, $H = \pi T^2/M_{
 m Pl}\sqrt{g_*/90}$ (g_* : Rel. dof),

$$\frac{dY_{\chi}}{dx} = -1.3 \ m_{\chi} M_{\rm Pl} \sqrt{g_*} \langle \sigma v \rangle x^{-2} (Y_{\chi}^2 - Y_{\chi,\rm eq}^2)$$

 $\blacktriangleright \chi$ is assumed to be in chemical equilibrium and decoupled when nonrelativistic:

$$n_{\chi,\text{eq}} = g_{\chi} (m_{\chi}T/2\pi)^{3/2} e^{-m_{\chi}/T}$$

$$\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2)$$

The relic abundance is inversely proportional to the cross section, and does not depend on T_R if T_R > T_F:

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \times 10^{-11} \ x_F \ {
m GeV}^{-2}}{\sqrt{g_*(x_F)}(a+3b/x_F)}, \quad x_F \simeq 22$$

Motivation Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary Relic abundance in a low-temperature scenario First order approximation Resummed ansatz Evolution of solutions Semi-analytic solution

3. Relic abundance in a low-temperature scenario

- T₀: The highest temperature of the RD universe The initial abundance is assumed to be negligible: Y_χ(x₀) = 0
- Zeroth order approximation:

$$T_0 < T_F \Rightarrow \chi$$
 annihilation is negligible:

$$\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x} x \left(a + \frac{6b}{x} \right)$$

 \Rightarrow The solution is proportional to the cross section:

$$Y_0(x \gg x_0) \simeq 0.014 \ g_\chi^2 g_*^{-3/2} m_\chi M_{\rm Pl} {\rm e}^{-2x_0} x_0 \left(a + rac{6b}{x_0}
ight)$$

This solution should be smoothly connected to the standard result

 Motivation
 Relic abundance in a low-temperature scenario

 Relic abundance in the standard cosmological scenario
 First order approximation

 Relic abundance in a low-temperature scenario
 Resummed ansatz

 Relic abundance including the decay of heavier particles
 Evolution of solutions

 Summary
 Semi-analytic solution

First order approximation

- Add a correction term describing χ annihilation to Y_0 : $Y_1 = Y_0 + \delta \ (\delta < 0)$
- As long as $|\delta| \ll Y_0$, the evolution equation for δ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_{\chi} M_{\rm PL} \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}$$

 \Rightarrow The solution is proportional to σ^3 :

$$egin{aligned} \delta(x \gg x_0) &\simeq & -2.5 imes 10^{-4} \; g_{\chi}^2 g_*^{-5/2} m^3 M_{\mathrm{Pl}}^3 \ & imes \mathrm{e}^{-4x_0} x_0 \left(a + rac{3b}{x_0}
ight) \left(a + rac{6b}{x_0}
ight)^2 \end{aligned}$$

• $|\delta|$ dominates over Y_0 for not very small cross section $\Rightarrow Y_1$ soon fails to track the exact solution
 Motivation
 Relic abundance in a low-temperature scenario

 Relic abundance in the standard cosmological scenario
 First order approximation

 Relic abundance in a low-temperature scenario
 Resummed ansatz

 Relic abundance including the decay of heavier particles
 Evolution of solutions

 Summary
 Semi-analytic solution

Resummed ansatz

•
$$Y_0 \propto \sigma > 0$$
, $\delta \propto \sigma^3 < 0$

- \blacktriangleright For large cross section, $Y_{\chi}(x
 ightarrow \infty)$ should be $\propto 1/\langle \sigma v
 angle$
- \Rightarrow This observation suggests the resummed ansats:

$$Y = Y_0 + \delta = Y_0 \left(1 + \frac{\delta}{Y_0} \right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

• For
$$|\delta| \gg Y_0$$
,

$$Y_{1,r}\simeq -rac{Y_0^2}{\delta}\simeq rac{x_0}{1.3~\sqrt{g_*}m_\chi M_{
m Pl}(a+3b/x_0)}\propto 1/\sigma$$

 $x_0 \rightarrow x_F \Rightarrow$ The standard formula

When χ production is negligible but the initial abundace is sizable, Y_{1,r} is exact

Relic abundance in the standard cosmological scenario **Relic abundance in a low-temperature scenario** Relic abundance including the decay of heavier particles Summary Relic abundance in a low-temperature scenario First order approximation Resummed ansatz Evolution of solutions Semi-analytic solution

Evolution of solutions

 Y_{χ} : Exact result, $Y_{1,r}$: Resummed ansatz, b = 0, $Y_{\chi}(x_0 = 22) = 0$

The ansatz Y_{1,r} describes the full temperature dependence of the abundance when equilibrium is not reached
 For larger cross section the deviation becomes sizable for

 $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

Relic abundance in the standard cosmological scenario **Relic abundance in a low-temperature scenario** Relic abundance including the decay of heavier particles Summary Relic abundance in a low-temperature scenario First order approximation Resummed ansatz Evolution of solutions Semi-analytic solution

Semi-analytic solution

Y_{1,r}(x₀, x → ∞) (∝ Ω_{1,r}h²) has a maximum (left)
 A new semi-analytic solution can be constructed (right):

• For $x_0 > x_{0,\max}$, use $Y_{1,r}(x_0)$;

For $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi–analytic solution Ω_{new} reproduces the correct final relic density Ω_{exact} to an accuracy of a few percent.

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

Relic abundance including the decay of heavier particles Evolution of solutions

4. Relic abundance including the decay of heavier particles

- Consider production of long–lived or stable particles χ from out–of–equilibrium decay of unstable particles φ
- Assumption: \u03c6 does not dominate the energy density, the comoving entropy remains constant:

$$\begin{split} \dot{n}_{\chi} + 3Hn_{\chi} &= -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi, \mathrm{eq}}^2) + N\Gamma_{\phi} n_{\phi} \\ \dot{n}_{\phi} + 3Hn_{\phi} &= -\Gamma_{\phi} n_{\phi} \end{split}$$

$$\Rightarrow \frac{dY_{\chi}}{dx} = -\frac{\langle \sigma v \rangle s}{Hx} (Y_{\chi}^2 - Y_{\chi,eq}^2) + NrxY_{\phi}(x_0) \exp\left(-\frac{r}{2}(x^2 - x_0^2)\right)$$

 $r = \Gamma_{\phi}/Hx^2 = (\Gamma_{\phi}M_{\rm Pl}/\pi m_{\chi}^2)$ is constant
Following the same procedure we can obtain Y_0 , δ and
 $Y_{1,r}$

Relic abundance in the standard cosmological scenario Relic abundance in a low-temperature scenario Relic abundance including the decay of heavier particles Summary

Relic abundance including the decay of heavier particles Evolution of solutions

Evolution of solutions

 Y_{χ} : Exact result, $Y_{1,r}$: Resummed ansatz, $a = 10^{-8}$ GeV $^{-2}$, b = 0, $Y_{\chi}(x_0 = 22) = 0$, r = 0.1, N = 1

- Most difficult situation: thermal and nonthermal production occur simultaneously (rx₀² ~ x₀) and contribute effectively (Y_χ(x ~ x₀) ~ Y_φ(x ~ x₀))
- The resummed ansatz describes scenarios with nonthermal χ prodcution as well as the thermal case

5. Summary

- We investigated the relic abundance of nonrelativistic long-lived or stable particles \(\chi\) in low-temperature scenarios
- \blacktriangleright The case with a heavier particle decaying into χ is also investigated
- Our approximate solutions for the number density accurately reproduce exact results when full thermal equilibrium is not achieved
- Even if full equilibrium is reached, our semi-analytic solution reproduces the correct final relic density to an accuracy of a few percent