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1. Motivation

I Production of massive, long–lived or stable relic particles
χ plays a crucial role in particle cosmology

I E.g.: weakly interacting massive particles (WIMPs)
I may constitute most of the dark matter in the universe
I may produce dark matter particles by the decays

I Standard picture of thermal WIMP production:
I WIMPs were in chemical equilibrium in the

radiation–dominated (RD) universe after inflation
I The freeze–out temperature: TF ' mχ/20 ' O(10) GeV
I The reheat temperature TR is larger than TF

I Cosmological observations establish the thermal history
only for 1T <∼ O(1) MeV

I Scenarios with low reheat tempereture (TR <∼ TF ) lowers
the χ abundance and reopens the parameter space
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I Existing treatments of thermal WIMP production:
I Full chemical equilibrium (Standard): nχ ∝ 1/〈σv〉
I Complitely out of equilibrium (Y0): nχ ∝ 〈σv〉

[Scherrer and Turner (1986); Giudice, Kolb and Riotto (2001), · · · ]

I We provide an approximate analytic treatment that is also
applicable to the in–between case (Y1,r)
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2. Relic abundance in the standard cosmological scenario

I Let us consider a generic WIMP χ
(χ = χ̄, single production of χ is forbidden)

I The number density nχ ⇐ the Boltzmann equation:

ṅχ + 3Hnχ = −〈σv〉(n2
χ − n2

χ,eq)

I nχ,eq: The number density of χ in equilibrium
I H = Ṙ/R : The Hubble paremeter
I 〈σv〉: The thermal average of the annihilation cross

section σ(χχ → SM particles) multiplied by relative
velocity v

I Kinetic equilibrium is assumed to be maintained

Γ(χf → χf )/Γ(χχ → f f̄ ) ∼ 1/Yχ = s/nχ À O(1)

(f: some SM particle, s: Entopy density)
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Standard cosmological scenario [Scherrer and Turner (1986)]

I Let us introduce Yχ(,eq) = nχ(,eq)/s and x = mχ/T
I For addiabatic expansion, sR3 = const.
I In the RD era, H = πT 2/MPl

√
g∗/90 (g∗: Rel. dof),

dYχ

dx
= −1.3 mχMPl

√
g∗〈σv〉x−2(Y 2

χ − Y 2
χ,eq)

I χ is assumed to be in chemical equilibrium and decoupled
when nonrelativistic:
I nχ,eq = gχ (mχT/2π)3/2e−mχ/T

I 〈σv〉 = a + 6b/x +O(1/x2)
I The relic abundance is inversely proportional to the cross

section, and does not depend on TR if TR > TF :

Ωχh2 ' 8.7× 10−11 xF GeV−2

√
g∗(xF )(a + 3b/xF )

, xF ' 22
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3. Relic abundance in a low–temperature scenario
I T0: The highest temperature of the RD universe

The initial abundance is assumed to be negligible:
Yχ(x0) = 0

I Zeroth order approximation:

T0 < TF ⇒ χ annihilation is negligible:

dY0

dx
= 0.028 g 2

χg−3/2
∗ mχMPle

−2xx

(
a +

6b

x

)

⇒ The solution is proportional to the cross section:

Y0(x À x0) ' 0.014 g 2
χg−3/2
∗ mχMPle

−2x0x0

(
a +

6b

x0

)

This solution should be smoothly connected to the
standard result
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First order approximation
I Add a correction term describing χ annihilation to Y0:

Y1 = Y0 + δ (δ < 0)
I As long as |δ| ¿ Y0, the evolution equation for δ is

dδ

dx
= −1.3

√
g∗mχMPL

(
a +

6b

x

)
Y0(x)2

x2

⇒ The solution is proportional to σ3:

δ(x À x0) ' −2.5× 10−4 g 2
χg−5/2
∗ m3M3

Pl

×e−4x0x0

(
a +

3b

x0

)(
a +

6b

x0

)2

I |δ| dominates over Y0 for not very small cross section

⇒ Y1 soon fails to track the exact solution
Mitsuru Kakizaki SUSY06
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Resummed ansatz

I Y0 ∝ σ > 0, δ ∝ σ3 < 0
I For large cross section, Yχ(x →∞) should be ∝ 1/〈σv〉
⇒ This observation suggests the resummed ansats:

Y = Y0 + δ = Y0

(
1 +

δ

Y0

)
' Y0

1− δ/Y0
≡ Y1,r

I For |δ| À Y0,

Y1,r ' −Y 2
0

δ
' x0

1.3
√

g∗mχMPl(a + 3b/x0)
∝ 1/σ

x0 → xF ⇒ The standard formula
I When χ production is negligible but the initial abundace

is sizable, Y1,r is exact
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Evolution of solutions
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a = 10−8 GeV−2

Yχ: Exact result, Y1,r : Resummed ansatz, b = 0, Yχ(x0 = 22) = 0

I The ansatz Y1,r describes the full temperature dependence
of the abundance when equilibrium is not reached

I For larger cross section the deviation becomes sizable for
x − x0 ∼ 1, but the deviation becomes smaller for x À x0
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Semi–analytic solution
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I Y1,r (x0, x →∞) (∝ Ω1,rh
2) has a maximum (left)

I A new semi–analytic solution can be constructed (right):
I For x0 > x0,max, use Y1,r (x0);

For x0 < x0,max, use Y1,r (x0,max)

The semi–analytic solution Ωnew reproduces the correct
final relic density Ωexact to an accuracy of a few percent
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4. Relic abundance including the decay of heavier particles

I Consider production of long–lived or stable particles χ
from out–of–equilibrium decay of unstable particles φ

I Assumption: φ does not dominate the energy density, the
comoving entropy remains constant:

ṅχ + 3Hnχ = −〈σv〉(n2
χ − n2

χ,eq) + NΓφnφ

ṅφ + 3Hnφ = −Γφnφ

⇒dYχ

dx
= −〈σv〉s

Hx
(Y 2

χ − Y 2
χ,eq) + NrxYφ(x0) exp

(
− r

2
(x2 − x2

0 )
)

r = Γφ/Hx2 = (ΓφMPl/πm2
χ) is constant

I Following the same procedure we can obtain Y0, δ and
Y1,r
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Evolution of solutions
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Yχ: Exact result, Y1,r : Resummed ansatz, a = 10−8 GeV−2, b = 0, Yχ(x0 = 22) = 0, r = 0.1, N = 1

I Most difficult situation: thermal and nonthermal
production occur simultaneously (rx2

0 ∼ x0) and
contribute effectively (Yχ(x ∼ x0) ∼ Yφ(x ∼ x0))

I The resummed ansatz describes scenarios with
nonthermal χ prodcution as well as the thermal case
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5. Summary

I We investigated the relic abundance of nonrelativistic
long–lived or stable particles χ in low–temperature
scenarios

I The case with a heavier particle decaying into χ is also
investigated

I Our approximate solutions for the number density
accurately reproduce exact results when full thermal
equilibrium is not achieved

I Even if full equilibrium is reached, our semi–analytic
solution reproduces the correct final relic density to an
accuracy of a few percent
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