Making Dark Matter

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

1 Introduction: The need for DM

Introduction: The need for DM
 Particle Dark Matter candidates

Introduction: The need for DM
 Particle Dark Matter candidates

3 Making particle DM

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R
 - b) Thermal WIMPs (freeze out)

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R
 - b) Thermal WIMPs (freeze out)
 - c) FIMPs (freeze in)

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R
 - b) Thermal WIMPs (freeze out)
 - c) FIMPs (freeze in)
 - d) Thermal gravitino production

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R
 - b) Thermal WIMPs (freeze out)
 - c) FIMPs (freeze in)
 - d) Thermal gravitino production
 - e) Production in inflaton decay

- 1 Introduction: The need for DM
- 2 Particle Dark Matter candidates
- 3 Making particle DM
 - a) WIMPs at low T_R
 - b) Thermal WIMPs (freeze out)
 - c) FIMPs (freeze in)
 - d) Thermal gravitino production
 - e) Production in inflaton decay
- 4 Summary

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
- Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
- Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP etc.) imply $\Omega_{\rm DM}h^2 = 0.112 \pm 0.006$ PDG, 2012 edition

Total baryon density is determined by:

Big Bang Nucleosynthesis

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: Neutrinos!

Only possible non-baryonic particle DM in SM: Neutrinos!

Make hot DM: do not describe structure formation correctly $\implies \Omega_{\nu}h^2 \leq 0.0062$

Only possible non-baryonic particle DM in SM: Neutrinos!

Make hot DM: do not describe structure formation correctly $\implies \Omega_{\nu}h^2 \leq 0.0062$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: Neutrinos!

Make hot DM: do not describe structure formation correctly $\implies \Omega_{\nu}h^2 \leq 0.0062$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and does not couple to elm radiation

Remarks

Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!

Remarks

- Precise "WMAP" determination of DM density hinges on assumption of "standard cosmology", including assumption of nearly scale—invariant primordial spectrum of density perturbations: almost assumes inflation!
- Evidence for $\Omega_{DM} \gtrsim 0.2$ much more robust than that! (Does, however, assume standard law of gravitation.)

Theorist's tasks:

Introduce right kind of particle (stable, neutral, non-relativistic)

Theorist's tasks:

- Introduce right kind of particle (stable, neutral, non-relativistic)
- Make enough (but not too much) of it in early universe

Theorist's tasks:

- Introduce right kind of particle (stable, neutral, non-relativistic)
- Make enough (but not too much) of it in early universe

There are many possible ways to solve these tasks!

Theorist's tasks:

- Introduce right kind of particle (stable, neutral, non-relativistic)
- Make enough (but not too much) of it in early universe

There are many possible ways to solve these tasks!

 \implies Use theoretical "prejudice" as guideline: Only consider candidates that solve (at least) one additional problem!

Axion a: Pseudoscalar pseudo-Goldstone boson

Introduced to solve strong CP problem

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$
- Direct detection difficult, but possible

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$
- Direct detection difficult, but possible
- Neutralino $\tilde{\chi}$: Majorana spin–1/2 fermion

Axion a: Pseudoscalar pseudo-Goldstone boson

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$
- Direct detection difficult, but possible
- Neutralino $\tilde{\chi}$: Majorana spin–1/2 fermion
 - Required in supersymmetrized SM

Axion a: Pseudoscalar pseudo-Goldstone boson

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$
- Direct detection difficult, but possible
- Neutralino $\tilde{\chi}$: Majorana spin–1/2 fermion
 - Required in supersymmetrized SM
 - \checkmark 50 GeV $\lesssim m_{ ilde{\chi}} \lesssim$ 1 TeV

Axion a: Pseudoscalar pseudo-Goldstone boson

- Introduced to solve strong CP problem
- Mass $m_a \lesssim 10^{-3} \text{ eV}$
- Direct detection difficult, but possible
- Neutralino $\tilde{\chi}$: Majorana spin–1/2 fermion
 - Required in supersymmetrized SM
 - m 50 GeV $\lesssim m_{ ilde{\chi}} \lesssim$ 1 TeV
 - Direct detection probably difficult, but possible

Gravitino \tilde{G} : Majorana spin–3/2 fermion

Gravitino \tilde{G} : Majorana spin–3/2 fermion

Required in supersymmetrized theory of gravity

Gravitino \tilde{G} : Majorana spin–3/2 fermion

- Required in supersymmetrized theory of gravity
- \checkmark 100 eV $\lesssim m_{ ilde{G}} \lesssim$ 1 TeV

Gravitino \tilde{G} : Majorana spin–3/2 fermion

- Required in supersymmetrized theory of gravity
- m 100 eV $\lesssim m_{ ilde{G}} \lesssim$ 1 TeV
- Direct detection is virtually impossible

Gravitino \tilde{G} : Majorana spin–3/2 fermion

- Required in supersymmetrized theory of gravity
- m 100 eV $\lesssim m_{ ilde{G}} \lesssim$ 1 TeV
- Direct detection is virtually impossible

Here: focus on WIMP (e.g. Neutralino) and Gravitino.

Principal possibilities:

Principal possibilities:

- DM was in thermal equilibrium:
 - Implies lower bounds on temperature T_R and χ production cross section

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]
- Example: Neutralino $\tilde{\chi}$

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]
- Example: Neutralino $\tilde{\chi}$
- DM production from thermal plasma:

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]
- Example: Neutralino $\tilde{\chi}$
- DM production from thermal plasma:
 - Thermal equilibrium may never have been achieved (low T_R and/or low interaction rate)

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]
- Example: Neutralino $\tilde{\chi}$
- DM production from thermal plasma:
 - Thermal equilibrium may never have been achieved (low T_R and/or low interaction rate)
 - Ω depends on particle physics, T_R and H(T)

Principal possibilities:

- Implies lower bounds on temperature T_R and χ production cross section
- Ω depends on particle physics and expansion history [Hubble parameter H(T)]
- Example: Neutralino $\tilde{\chi}$
- DM production from thermal plasma:
 - Thermal equilibrium may never have been achieved (low T_R and/or low interaction rate)
 - Ω depends on particle physics, T_R and H(T)
 - Example: Gravitino \tilde{G} with $m_{\tilde{G}} > 0.1$ keV

Non-thermal production:

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)
 - Depends strongly on details of particle physics and cosmology

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)
 - Depends strongly on details of particle physics and cosmology
- Via particle–antiparticle asymmetry:

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)
 - Depends strongly on details of particle physics and cosmology
- Via particle–antiparticle asymmetry:
 - Assume symmetric contribution annihilates away: only "particles" left (see: baryons)

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)
 - Depends strongly on details of particle physics and cosmology
- Via particle–antiparticle asymmetry:
 - Assume symmetric contribution annihilates away: only "particles" left (see: baryons)
 - If same mechanism generates baryon asymmetry: "Naturally" explains $\Omega_{\rm DM} \simeq 5\Omega_{\rm baryon}$, if $m_{\chi} \simeq 5m_p$

- Non-thermal production:
 - From decay of heavier particle ($\tilde{\chi}, \tilde{G}$)
 - During phase transition (axion a)
 - During (p)reheating at end of inflation ($\tilde{G}, \tilde{\chi}$)
 - Depends strongly on details of particle physics and cosmology
- Via particle–antiparticle asymmetry:
 - Assume symmetric contribution annihilates away: only "particles" left (see: baryons)
 - If same mechanism generates baryon asymmetry: "Naturally" explains $\Omega_{\rm DM} \simeq 5\Omega_{\rm baryon}$, if $m_{\chi} \simeq 5m_p$
 - For WIMPs: Order of magnitude of Ω_{DM} is understood; Ω_{baryon} isn't

• Currently: Universe dominated by dark energy (~ 75%) and non-relativistic matter (~ 25%); $\Omega_{rad} \sim 10^{-4}$. (Radiation \equiv relativistic particles.)

- Currently: Universe dominated by dark energy (~ 75%) and non-relativistic matter (~ 25%); $\Omega_{rad} \sim 10^{-4}$. (Radiation \equiv relativistic particles.)
- Dependence on scale factor R: $\rho_{\rm m} \propto R^{-3}$, $\rho_{\rm rad} \propto R^{-4}$ ρ : energy density, units GeV⁴

- Currently: Universe dominated by dark energy (~ 75%) and non-relativistic matter (~ 25%); $\Omega_{rad} \sim 10^{-4}$. (Radiation \equiv relativistic particles.)
- Dependence on scale factor R: $\rho_{\rm m} \propto R^{-3}$, $\rho_{\rm rad} \propto R^{-4}$ ρ : energy density, units GeV⁴
- Implies $\rho_{\rm rad} > \rho_{\rm m}$ for $R < 5 \cdot 10^{-4} R_0$, i.e. $T \gtrsim 1 \text{ eV}$

- Currently: Universe dominated by dark energy (~ 75%) and non-relativistic matter (~ 25%); $\Omega_{rad} \sim 10^{-4}$. (Radiation \equiv relativistic particles.)
- Dependence on scale factor R: $\rho_{\rm m} \propto R^{-3}$, $\rho_{\rm rad} \propto R^{-4}$ ρ : energy density, units GeV⁴
- Implies $\rho_{\rm rad} > \rho_{\rm m}$ for $R < 5 \cdot 10^{-4} R_0$, i.e. $T \gtrsim 1 \text{ eV}$
- Early Universe was dominated by radiation! (Except in some extreme 'quintessence' or 'brane cosmology' models.)

Thermal DM production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Thermal DM production

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{\rm ann} = \sigma(\chi \chi \to {\rm SM \ particles})$ v: relative velocity between χ 's in their cms $n_{\chi,\,{\rm eq}}: \chi$ density in full equilibrium

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

2nd lhs term: Describes χ dilution by expansion of Universe: $\frac{dR^{-3}}{dt} = -3R^{-4}\dot{R} = -3HR^{-3}$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

2nd lhs term: Describes χ dilution by expansion of Universe: $\frac{dR^{-3}}{dt} = -3R^{-4}\dot{R} = -3HR^{-3}$

1st rhs term: describes χ pair annihilation; assumes *shape* of n_{χ} same as that of $n_{\chi, eq}$: reactions $\chi + f \leftrightarrow \chi + f$ are very fast (f : some SM particle).

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

2nd Ihs term: Describes χ dilution by expansion of Universe: $\frac{dR^{-3}}{dt} = -3R^{-4}\dot{R} = -3HR^{-3}$

1st rhs term: describes χ pair annihilation; assumes *shape* of n_{χ} same as that of $n_{\chi, eq}$: reactions $\chi + f \leftrightarrow \chi + f$ are very fast (f : some SM particle).

2nd rhs term: describes χ pair production; assumes CP conservation (\Longrightarrow same matrix element).

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

2nd Ihs term: Describes χ dilution by expansion of Universe: $\frac{dR^{-3}}{dt} = -3R^{-4}\dot{R} = -3HR^{-3}$

1st rhs term: describes χ pair annihilation; assumes *shape* of n_{χ} same as that of $n_{\chi, eq}$: reactions $\chi + f \leftrightarrow \chi + f$ are very fast (f : some SM particle).

2nd rhs term: describes χ pair production; assumes CP conservation (\Longrightarrow same matrix element).

Check: creation and annihilation balance iff $n_{\chi} = n_{\chi, eq}$.

Rewriting the Boltzmann equation

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

For adiabatic expansion of the Universe: $\frac{ds}{dt} = -3Hs$

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

For adiabatic expansion of the Universe: $\frac{ds}{dt} = -3Hs$

$$\frac{dY_{\chi}}{dt} = \frac{1}{s}\frac{dn_{\chi}}{dt} - \frac{n_{\chi}}{s^2}\frac{ds}{dt}$$

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

For adiabatic expansion of the Universe: $\frac{ds}{dt} = -3Hs$

$$\frac{dY_{\chi}}{dt} = \frac{1}{s} \frac{dn_{\chi}}{dt} - \frac{n_{\chi}}{s^2} \frac{ds}{dt}$$
$$= \frac{1}{s} \left[-3Hn_{\chi} - \langle \sigma_{\text{ann}} v \rangle \left(n_{\chi}^2 - n_{\chi, \text{eq}}^2 \right) \right] + \frac{n_{\chi}}{s^2} 3Hs$$

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

For adiabatic expansion of the Universe: $\frac{ds}{dt} = -3Hs$

$$\frac{dY_{\chi}}{dt} = \frac{1}{s} \frac{dn_{\chi}}{dt} - \frac{n_{\chi}}{s^2} \frac{ds}{dt}$$
$$= \frac{1}{s} \left[-3Hn_{\chi} - \langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right) \right] + \frac{n_{\chi}}{s^2} 3Hs$$
$$= -s \langle \sigma_{\rm ann} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \rm eq}^2 \right)$$

 $s = \frac{2\pi^2}{45}g_*T^3$ (g_{*}: no. of relativistic d.o.f.)

In order to get rid of the $3Hn_{\chi}$ term: introduce $Y_{\chi} \equiv \frac{n_{\chi}}{s}$ (s: entropy density)

For adiabatic expansion of the Universe: $\frac{ds}{dt} = -3Hs$

$$\frac{dY_{\chi}}{dt} = \frac{1}{s} \frac{dn_{\chi}}{dt} - \frac{n_{\chi}}{s^2} \frac{ds}{dt}$$

$$= \frac{1}{s} \left[-3Hn_{\chi} - \langle \sigma_{\text{ann}} v \rangle \left(n_{\chi}^2 - n_{\chi, \text{eq}}^2 \right) \right] + \frac{n_{\chi}}{s^2} 3Hs$$

$$= -s \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right)$$

 $s = \frac{2\pi^2}{45}g_*T^3$ (g_{*} : no. of relativistic d.o.f.)

If interactions are negligible: $Y_{\chi} \rightarrow \text{const.}$, i.e. χ density in *co–moving* volume is unchanged

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_{\chi}}{T}$.

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_{\chi}}{T}$. Had: $\dot{s} = -3Hs$

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_{\chi}}{T}$. Had: $\dot{s} = -3Hs$

 $\implies \frac{d}{dt} \left(g_* T^3 \right) = -3H \left(g_* T^3 \right)$

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_{\chi}}{T}$. Had: $\dot{s} = -3Hs$

$$\Longrightarrow \frac{d}{dt} \left(g_* T^3 \right) = -3H \left(g_* T^3 \right)$$

$$\Longrightarrow \dot{g}_*T^3 + 3g_*T^2\dot{T} = -3Hg_*T^3$$

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_{\chi}}{T}$. Had: $\dot{s} = -3Hs$ $\Rightarrow \frac{d}{dt} (g_*T^3) = -3H (g_*T^3)$

$$\implies \dot{g}_*T^3 + 3g_*T^2\dot{T} = -3Hg_*T^3$$
$$\implies \dot{T} = -\left(H + \frac{\dot{g}_*}{3g_*}\right)T$$

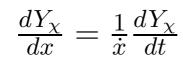
Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_x}{T}$. Had: $\dot{s} = -3Hs$ $\Rightarrow \frac{d}{dt} (g_*T^3) = -3H (g_*T^3)$ $\Rightarrow \dot{g}_*T^3 + 3g_*T^2\dot{T} = -3Hg_*T^3$ $\Rightarrow \dot{T} = -\left(H + \frac{\dot{g}_*}{3g_*}\right)T$

From now on: set $\dot{g}_* = 0$, since g_* changes only slowly with time. (Except during QCD phase transition.)

Write lhs entirely in terms of dimensionless quantities: introduce $x = \frac{m_x}{T}$. Had: $\dot{s} = -3Hs$ $\Rightarrow \frac{d}{dt} (g_*T^3) = -3H (g_*T^3)$ $\Rightarrow \dot{g}_*T^3 + 3g_*T^2\dot{T} = -3Hg_*T^3$ $\Rightarrow \dot{T} = -\left(H + \frac{\dot{g}_*}{3g_*}\right)T$

From now on: set $\dot{g}_* = 0$, since g_* changes only slowly with time. (Except during QCD phase transition.)

$$\implies \dot{x} = -\frac{m_{\chi}}{T^2}\dot{T} = -\frac{x}{T}\dot{T} = xH$$



$$\frac{dY_{\chi}}{dx} = \frac{1}{\dot{x}} \frac{dY_{\chi}}{dt}$$
$$= -\frac{1}{Hx} s \langle \sigma_{\rm ann} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \rm eq}^2 \right)$$

$$\begin{aligned} \frac{dY_{\chi}}{dx} &= \frac{1}{\dot{x}} \frac{dY_{\chi}}{dt} \\ &= -\frac{1}{Hx} s \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right) \\ \text{Use } s &= \frac{2\pi^2}{45} g_* T^3 \\ H &= \sqrt{\frac{\rho_{\text{rad}}}{3M_P^2}} = \frac{\pi}{\sqrt{90}} \frac{\sqrt{g_*}}{M_P} T^2 \quad \text{for flat, rad.-dom. Universe} \end{aligned}$$

$$\frac{dY_{\chi}}{dx} = \frac{1}{\dot{x}} \frac{dY_{\chi}}{dt}$$

$$= -\frac{1}{Hx} s \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right)$$
Use $s = \frac{2\pi^2}{45} g_* T^3$

$$H = \sqrt{\frac{\rho_{\text{rad}}}{3M_P^2}} = \frac{\pi}{\sqrt{90}} \frac{\sqrt{g_*}}{M_P} T^2 \quad \text{for flat, rad.-dom. Universe}$$

$$\implies \frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right)$$

$$\begin{aligned} \frac{dY_{\chi}}{dx} &= \frac{1}{\dot{x}} \frac{dY_{\chi}}{dt} \\ &= -\frac{1}{Hx} s \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right) \\ \text{Use } s &= \frac{2\pi^2}{45} g_* T^3 \\ H &= \sqrt{\frac{\rho_{\text{rad}}}{3M_P^2}} = \frac{\pi}{\sqrt{90}} \frac{\sqrt{g_*}}{M_P} T^2 \quad \text{for flat, rad.-dom. Universe} \\ &\implies \frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\text{ann}} v \rangle \left(Y_{\chi}^2 - Y_{\chi, \text{eq}}^2 \right) \\ \text{For } T \gtrsim 200 \text{ MeV: } 10 \lesssim \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \lesssim 20 \text{ (SM, MSSM)} \end{aligned}$$

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$ for some T!

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$ for some T!

• For renormalizable interactions: easiest to satisfy for $T \sim m_{\chi} \Longrightarrow$

$$\langle \sigma_{\rm ann} v \rangle (T \simeq m_{\chi}) > \frac{1}{m_{\chi} M_{\rm P}}$$

(See: freeze-in).

 $n_{\chi}\langle \sigma_{\rm ann}v\rangle > H$ for some T!

• For renormalizable interactions: easiest to satisfy for $T \sim m_{\chi} \Longrightarrow$

$$\langle \sigma_{\rm ann} v \rangle (T \simeq m_{\chi}) > \frac{1}{m_{\chi} M_{\rm P}}$$

(See: freeze-in).

✓ For non-renormalizable interactions: easiest to satisfy at maximal temperature, $T \simeq T_R$. (See: \tilde{G})

 $n_{\chi}\langle \sigma_{\rm ann}v\rangle > H$ for some T!

• For renormalizable interactions: easiest to satisfy for $T \sim m_{\chi} \Longrightarrow$

$$\langle \sigma_{\rm ann} v \rangle (T \simeq m_{\chi}) > \frac{1}{m_{\chi} M_{\rm P}}$$

(See: freeze-in).

- ✓ For non-renormalizable interactions: easiest to satisfy at maximal temperature, $T \simeq T_R$. (See: \tilde{G})
- For $T_R < m_{\chi}$: Easiest to satisfy for $T \simeq T_R$ (see: WIMP at low T_R).

Decouple (freeze out) at temperature $T \ll m_{\chi}$ (see below). (N.B. Means χ makes *cold* DM!)

Decouple (freeze out) at temperature $T \ll m_{\chi}$ (see below). (N.B. Means χ makes *cold* DM!)

 χ 's are non-relativistic: 2 consequences

Decouple (freeze out) at temperature $T \ll m_{\chi}$ (see below). (N.B. Means χ makes *cold* DM!)

 χ 's are non-relativistic: 2 consequences

1)
$$n_{\chi} \simeq g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-x}$$

 $\langle \sigma_{\mathrm{ann}} v \rangle \simeq \frac{x^{3/2}}{2\sqrt{\pi}} \int_0^\infty dv \, v^2 (\sigma_{\mathrm{ann}} v) e^{-xv^2/4}$

Decouple (freeze out) at temperature $T \ll m_{\chi}$ (see below). (N.B. Means χ makes *cold* DM!)

 χ 's are non-relativistic: 2 consequences

1)
$$n_{\chi} \simeq g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-x}$$

 $\langle \sigma_{\mathrm{ann}} v \rangle \simeq \frac{x^{3/2}}{2\sqrt{\pi}} \int_0^\infty dv \, v^2 (\sigma_{\mathrm{ann}} v) e^{-xv^2/4}$

2) Most of the time: can expand cross section in χ velocity:

$$\sigma_{\rm ann}v = a + bv^2 + \ldots \implies \langle \sigma_{\rm ann}v \rangle = a + 6\frac{b}{x} + \ldots$$

Decouple (freeze out) at temperature $T \ll m_{\chi}$ (see below). (N.B. Means χ makes *cold* DM!)

 χ 's are non-relativistic: 2 consequences

1)
$$n_{\chi} \simeq g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-x}$$

 $\langle \sigma_{\mathrm{ann}} v \rangle \simeq \frac{x^{3/2}}{2\sqrt{\pi}} \int_0^\infty dv \, v^2 (\sigma_{\mathrm{ann}} v) e^{-xv^2/4}$

2) Most of the time: can expand cross section in χ velocity:

$$\sigma_{\rm ann}v = a + bv^2 + \ldots \implies \langle \sigma_{\rm ann}v \rangle = a + 6\frac{b}{x} + \ldots$$

Typically, $a, b \lesssim \frac{\alpha^2}{m_{\chi}^2}$, $\alpha^2 \sim 10^{-3}$, unless a is suppressed by some symmetry; e.g. for $\tilde{\chi}\tilde{\chi} \to f\bar{f}$: $a \propto m_f^2$.

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

$$\implies \frac{dY_{\chi}}{dx} = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) Y_{\chi, \text{eq.}}^2$$

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

$$\implies \frac{dY_{\chi}}{dx} = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) Y_{\chi, \text{eq.}}^2$$
$$= \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) \frac{m_{\chi}^6}{(2\pi)^3 x^3} e^{-2x} \frac{45^2 x^6}{(2\pi^2)^2 g_*^2 m_{\chi}^6}$$

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

$$\implies \frac{dY_{\chi}}{dx} = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) Y_{\chi, \text{eq.}}^2 = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) \frac{m_{\chi}^6}{(2\pi)^3 x^3} e^{-2x} \frac{45^2 x^6}{(2\pi^2)^2 g_*^2 m_{\chi}^6} = \frac{45^2}{8\sqrt{90} g_*^{3/2} \pi^6} g_{\chi}^2 m_{\chi} M_P(ax + 6b) e^{-2x}.$$

Let T_R be the highest temperature of the radiation–dominated universe (after inflation).

Boundary condition: $n_{\chi}(T_R) = 0$ (??)

$$\Longrightarrow \frac{dY_{\chi}}{dx} = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) Y_{\chi, \text{eq.}}^2 = \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \left(a + \frac{6b}{x}\right) \frac{m_{\chi}^6}{(2\pi)^3 x^3} e^{-2x} \frac{45^2 x^6}{(2\pi^2)^2 g_*^2 m_{\chi}^6} = \frac{45^2}{8\sqrt{90} g_*^{3/2} \pi^6} g_{\chi}^2 m_{\chi} M_P (ax + 6b) e^{-2x}.$$

$$\Longrightarrow Y_{\chi}(x \gg x_R) = \frac{45^2 g_{\chi}^2}{8\sqrt{90} g_*^{3/2} \pi^6} m_{\chi} M_P \cdot e^{-2x_R} \left[\frac{a}{2} \left(x_R - \frac{1}{2}\right) + 3b\right].$$

To get current $\Omega_{\chi}h^2$

Saw: $Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R$.

To get current $\Omega_{\chi}h^2$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$

To get current $\Omega_{\chi}h^2$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \text{ km Mpc}^{-1} \text{ sec}^{-1})^2}$
 $= \frac{Y_{\chi,0} s_0 m_{\chi}}{3M_P^2 (100 \text{ km Mpc}^{-1} \text{ sec}^{-1})^2}$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$
 $= \frac{Y_{\chi,0} s_0 m_{\chi}}{3M_P^2 (100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$
 $= \frac{Y_{\chi,0} s_0 m_{\chi}}{3M_P^2 (100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$

$$\Longrightarrow \Omega_{\chi} h^2 = m_{\chi} Y_{\chi,0} \, 2.8 \cdot 10^8 \, \mathrm{GeV}^{-1}$$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$
 $= \frac{Y_{\chi,0} s_0 m_{\chi}}{3M_P^2 (100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$

$$\implies \Omega_{\chi} h^2 = m_{\chi} Y_{\chi,0} \, 2.8 \cdot 10^8 \, \text{GeV}^{-1}$$
$$\implies \Omega_{\chi} h^2 = 0.9 \cdot 10^{23} \, e^{-2m_{\chi}/T_R} \left[\frac{\hat{a}}{2} \left(\frac{m_{\chi}}{T_R} - \frac{1}{2} \right) + 3\hat{b} \right]$$

Saw:
$$Y_{\chi} \to Y_{\chi,0} = \text{const. for } x \gg x_R.$$

 $\implies \Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_{\text{crit.}}} h^2 = \frac{n_{\chi} m_{\chi}}{3H_0^2 M_P^2} \frac{H_0^2}{(100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$
 $= \frac{Y_{\chi,0} s_0 m_{\chi}}{3M_P^2 (100 \,\text{km Mpc}^{-1} \,\text{sec}^{-1})^2}$

$$\implies \Omega_{\chi} h^2 = m_{\chi} Y_{\chi,0} \, 2.8 \cdot 10^8 \, \text{GeV}^{-1}$$
$$\implies \Omega_{\chi} h^2 = 0.9 \cdot 10^{23} \, e^{-2m_{\chi}/T_R} \left[\frac{\hat{a}}{2} \left(\frac{m_{\chi}}{T_R} - \frac{1}{2} \right) + 3\hat{b} \right]$$
Example: $\hat{a} = 0, \ \hat{b} = 10^{-4} \implies \text{need } T_R \simeq 0.04 m_{\chi}$

Assume χ was in full thermal equilibrium after inflation.

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

Assume χ was in full thermal equilibrium after inflation. Requires

 $n_{\chi} \langle \sigma_{\rm ann} v \rangle > H$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, eq} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F .

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

$$\operatorname{\mathsf{Had}} \frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\mathrm{ann}}v \rangle \left(Y_{\chi}^2 - Y_{\chi,\,\mathrm{eq}}^2\right)$$

Had $\frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\rm ann}v \rangle \left(Y_{\chi}^2 - Y_{\chi,\,\rm eq}^2\right)$ High temperature, $T > T_F$: write $Y_{\chi} = Y_{\chi,\,\rm eq.} + \Delta$, ignore Δ^2 term

Had $\frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{ann}v \rangle \left(Y_{\chi}^2 - Y_{\chi,eq}^2\right)$ High temperature, $T > T_F$: write $Y_{\chi} = Y_{\chi,eq.} + \Delta$, ignore Δ^2 term

$$\implies \frac{d\Delta}{dx} = -\frac{dY_{\chi, eq}}{dx} + \frac{dY_{\chi}}{dx}$$
$$\simeq -\frac{dY_{\chi, eq}}{dx} - \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\rm ann}v \rangle \left(2Y_{\chi, eq}\Delta\right)$$

Had $\frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\mathrm{ann}}v \rangle \left(Y_{\chi}^2 - Y_{\chi,\mathrm{eq}}^2\right)$ High temperature, $T > T_F$: write $Y_{\chi} = Y_{\chi,\mathrm{eq.}} + \Delta$, ignore Δ^2 term $\Longrightarrow \frac{d\Delta}{dx} = -\frac{dY_{\chi,\mathrm{eq}}}{dx} + \frac{dY_{\chi}}{dx}$ $\simeq -\frac{dY_{\chi,\mathrm{eq}}}{dx} - \frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\mathrm{ann}}v \rangle \left(2Y_{\chi,\mathrm{eq}}\Delta\right)$

Use $\frac{dY_{\chi, eq}}{dx} = -\frac{3}{2} \frac{Y_{\chi, eq}}{x} - Y_{\chi, eq} \simeq -Y_{\chi, eq}$ $(x \gg 1)$:

Had $\frac{dY_{\chi}}{dx} = -\frac{4\pi\sqrt{g_*}}{\sqrt{90}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\rm ann}v \rangle \left(Y_{\chi}^2 - Y_{\chi,\rm eq}^2\right)$ High temperature, $T > T_F$: write $Y_{\chi} = Y_{\chi, eq.} + \Delta$, ignore Δ^2 term $\implies \frac{d\Delta}{dx} = -\frac{dY_{\chi, eq}}{dx} + \frac{dY_{\chi}}{dx}$ $\simeq -\frac{dY_{\chi, eq}}{dx} - \frac{4\pi\sqrt{g_*}}{\sqrt{20}} \frac{m_{\chi}M_P}{x^2} \langle \sigma_{\rm ann}v \rangle \left(2Y_{\chi, eq}\Delta\right)$ Use $\frac{dY_{\chi,eq}}{dx} = -\frac{3}{2} \frac{Y_{\chi,eq}}{x} - Y_{\chi,eq} \simeq -Y_{\chi,eq}$ $(x \gg 1)$: To keep $\frac{d\Delta}{dx} = 0$: need $\Delta \simeq \frac{x^2}{2.64m_{\odot}M_{Re}/a_{\odot}}\langle\sigma_{\rm opp}v\rangle$

 $Y_{\chi, eq} \rightarrow 0 \Longrightarrow$ can ignore production term in Boltzmann eq.

 $Y_{\chi, eq} \rightarrow 0 \Longrightarrow$ can ignore production term in Boltzmann eq. $\frac{d\Delta}{dx} \simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{ann} v \rangle \Delta^2$

$$\begin{split} Y_{\chi,\,\mathrm{eq}} &\to 0 \Longrightarrow \mathrm{can \ ignore \ production \ term \ in \ Boltzmann \ eq.} \\ \frac{d\Delta}{dx} &\simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{\mathrm{ann}} v \rangle \Delta^2 \\ &\Longrightarrow \frac{1}{\Delta(x_F)} - \frac{1}{\Delta(\infty)} = -1.32 m_{\chi} M_P \sqrt{g_*} \int_{x_F}^{\infty} dx x^{-2} \langle \sigma_{\mathrm{ann}} v \rangle \\ &\equiv -1.32 m_{\chi} M_P \sqrt{g_*} \qquad J(x_F) \end{split}$$

$$\begin{split} Y_{\chi,\,\mathrm{eq}} &\to 0 \Longrightarrow \mathrm{can \ ignore \ production \ term \ in \ Boltzmann \ eq.} \\ \frac{d\Delta}{dx} &\simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{\mathrm{ann}} v \rangle \Delta^2 \\ &\Longrightarrow \frac{1}{\Delta(x_F)} - \frac{1}{\Delta(\infty)} = -1.32 m_{\chi} M_P \sqrt{g_*} \int_{x_F}^{\infty} dx x^{-2} \langle \sigma_{\mathrm{ann}} v \rangle \\ &\equiv -1.32 m_{\chi} M_P \sqrt{g_*} \qquad J(x_F) \end{split}$$
 $\mathsf{Assume} \ \Delta(\infty) \ll \Delta(x_F)$

 $\implies Y_{\chi,0} = \frac{1}{1.32\sqrt{g_*}m_\chi M_P J(x_F)}$

 $Y_{\chi, eq} \rightarrow 0 \Longrightarrow$ can ignore production term in Boltzmann eq. $\frac{d\Delta}{dx} \simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{\rm ann} v \rangle \Delta^2$ $\implies \frac{1}{\Delta(x_F)} - \frac{1}{\Delta(\infty)} = -1.32m_{\chi}M_P\sqrt{g_*}\int_{x_F}^{\infty} dx x^{-2} \langle \sigma_{\rm ann}v \rangle$ $\equiv -1.32m_{\chi}M_{P}\sqrt{g_{*}} \qquad J(x_{F})$ Assume $\Delta(\infty) \ll \Delta(x_F)$ $\implies Y_{\chi,0} = \frac{1}{1.32\sqrt{g_*}m_{\gamma}M_P J(x_F)}$ $\implies \Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{a_*} J(x_F)}$

 $Y_{\chi, eq} \rightarrow 0 \Longrightarrow$ can ignore production term in Boltzmann eq. $\frac{d\Delta}{dx} \simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{\rm ann} v \rangle \Delta^2$ $\implies \frac{1}{\Delta(x_F)} - \frac{1}{\Delta(\infty)} = -1.32m_{\chi}M_P\sqrt{g_*}\int_{x_F}^{\infty} dx x^{-2} \langle \sigma_{\rm ann}v \rangle$ $\equiv -1.32m_{\chi}M_{P}\sqrt{g_{*}} \qquad J(x_{F})$ Assume $\Delta(\infty) \ll \Delta(x_F)$ $\implies Y_{\chi,0} = \frac{1}{1.32\sqrt{q_*}m_{\chi}M_P J(x_F)}$ $\implies \Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{q_*} J(x_F)}$

Typically, $x_F \simeq 22$; depends only logarithmically on σ_{ann} .

 $Y_{\chi, eq} \rightarrow 0 \Longrightarrow$ can ignore production term in Boltzmann eq. $\frac{d\Delta}{dx} \simeq -1.32 m_{\chi} M_P \sqrt{g_*} x^{-2} \langle \sigma_{\rm ann} v \rangle \Delta^2$ $\implies \frac{1}{\Delta(x_F)} - \frac{1}{\Delta(\infty)} = -1.32m_{\chi}M_P\sqrt{g_*}\int_{x_F}^{\infty} dx x^{-2} \langle \sigma_{\rm ann}v \rangle$ $\equiv -1.32m_{\chi}M_{P}\sqrt{g_{*}} \qquad J(x_{F})$ Assume $\Delta(\infty) \ll \Delta(x_F)$ $\implies Y_{\chi,0} = \frac{1}{1.32\sqrt{q_*}m_{\chi}M_P J(x_F)}$ $\implies \Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{q_*} J(x_F)}$

Typically, $x_F \simeq 22$; depends only logarithmically on σ_{ann} . Non-relativistic expansion: $J(x_F) = \frac{a}{x_F} + \frac{3b}{x_F^2} \dots$

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{g_*} J(x_F)}$$

Solution validated numerically.

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{g_*} J(x_F)}$$

- Solution validated numerically.
- Density has no explicit dependence on m_{χ} .

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{g_*} J(x_F)}$$

- Solution validated numerically.
- Density has no explicit dependence on m_{χ} .
- Density has no dependence on reheat temperature T_R , if $T_R > T_F$.

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{g_*} J(x_F)}$$

- Solution validated numerically.
- Density has no explicit dependence on m_{χ} .
- Density has no dependence on reheat temperature T_R , if $T_R > T_F$.
- Density scales like inverse of annihilation cross section: The stronger the WIMPs annihilate, the fewer are left.

$$\Omega_{\chi} h^2 \simeq \frac{8.7 \cdot 10^{-11} \text{ GeV}^{-2}}{\sqrt{g_*} J(x_F)}$$

- Solution validated numerically.
- Density has no explicit dependence on m_{χ} .
- Density has no dependence on reheat temperature T_R , if $T_R > T_F$.
- Density scales like inverse of annihilation cross section: The stronger the WIMPs annihilate, the fewer are left.
- Smooth transition to previous case ($T_R < T_F$): MD, Iminniyaz, Kakizaki, hep-ph/0603165

Co–annihilation

Is important for SUSY scenarios with small mass splitting between LSP and NLSP: $\delta m \equiv m_{\tilde{\chi}'} - m_{\tilde{\chi}} \ll m_{\tilde{\chi}}$

Co-annihilation

Is important for SUSY scenarios with small mass splitting between LSP and NLSP: $\delta m \equiv m_{\tilde{\chi}'} - m_{\tilde{\chi}} \ll m_{\tilde{\chi}}$

Rate $(\tilde{\chi} + f \leftrightarrow \tilde{\chi}' + f') \gg \text{Rate}(\tilde{\chi}\tilde{\chi} \leftrightarrow ff)$, by factor $\propto e^{(2m_{\tilde{\chi}} - m_{\tilde{\chi}'})/T} (f, f': \text{SM particles})$

Co-annihilation

Is important for SUSY scenarios with small mass splitting between LSP and NLSP: $\delta m \equiv m_{\tilde{\chi}'} - m_{\tilde{\chi}} \ll m_{\tilde{\chi}}$

Rate $(\tilde{\chi} + f \leftrightarrow \tilde{\chi}' + f') \gg \text{Rate}(\tilde{\chi}\tilde{\chi} \leftrightarrow ff)$, by factor $\propto e^{(2m_{\tilde{\chi}} - m_{\tilde{\chi}'})/T} (f, f': \text{SM particles})$

 $\tilde{\chi}$, $\tilde{\chi}'$ retain *relative* equilibrium well after sparticles decouple from SM particles: $n_{\tilde{\chi}'} = n_{\tilde{\chi}} e^{-\delta m/T}$

Co–annihilation

Is important for SUSY scenarios with small mass splitting between LSP and NLSP: $\delta m \equiv m_{\tilde{\chi}'} - m_{\tilde{\chi}} \ll m_{\tilde{\chi}}$

Rate $(\tilde{\chi} + f \leftrightarrow \tilde{\chi}' + f') \gg \text{Rate}(\tilde{\chi}\tilde{\chi} \leftrightarrow ff)$, by factor $\propto e^{(2m_{\tilde{\chi}} - m_{\tilde{\chi}'})/T} (f, f': \text{SM particles})$

 $\tilde{\chi}, \tilde{\chi}'$ retain *relative* equilibrium well after sparticles decouple from SM particles: $n_{\tilde{\chi}'} = n_{\tilde{\chi}} e^{-\delta m/T}$

Previous treatment still applies, with replacement:

 $\sigma_{\rm ann} \to \sigma_{\rm eff} \sim \sigma_{\rm ann} + f_B \sigma(\tilde{\chi} \tilde{\chi}' \to {\rm SM}) + f_B^2 \sigma(\tilde{\chi}' \tilde{\chi}' \to {\rm SM})$

 f_B : relative Boltzmann factor = $\left(1 + \frac{\delta m}{m_{\tilde{\chi}}}\right)^{3/2} e^{-\delta m/T}$

Co–annihilation

Is important for SUSY scenarios with small mass splitting between LSP and NLSP: $\delta m \equiv m_{\tilde{\chi}'} - m_{\tilde{\chi}} \ll m_{\tilde{\chi}}$

Rate $(\tilde{\chi} + f \leftrightarrow \tilde{\chi}' + f') \gg \text{Rate}(\tilde{\chi}\tilde{\chi} \leftrightarrow ff)$, by factor $\propto e^{(2m_{\tilde{\chi}} - m_{\tilde{\chi}'})/T} (f, f': \text{SM particles})$

 $\tilde{\chi}, \tilde{\chi}'$ retain *relative* equilibrium well after sparticles decouple from SM particles: $n_{\tilde{\chi}'} = n_{\tilde{\chi}} e^{-\delta m/T}$

Previous treatment still applies, with replacement:

 $\sigma_{\rm ann} \to \sigma_{\rm eff} \sim \sigma_{\rm ann} + f_B \sigma(\tilde{\chi} \tilde{\chi}' \to {\rm SM}) + f_B^2 \sigma(\tilde{\chi}' \tilde{\chi}' \to {\rm SM})$

 f_B : relative Boltzmann factor = $\left(1 + \frac{\delta m}{m_{\tilde{\chi}}}\right)^{3/2} e^{-\delta m/T}$

 $\sigma(\tilde{\chi}\tilde{\chi}'), \ \sigma(\tilde{\chi}'\tilde{\chi}') \gg \sigma(\tilde{\chi}\tilde{\chi})$ possible!

Case 3: Freeze-in

Hall et al., arXiv:0911.1120

Assume very weak, renormalizable interaction (Feebly Interacting Massive Particle, FIMP): never achieved thermal equilibrium

Case 3: Freeze-in

Hall et al., arXiv:0911.1120

- Assume very weak, renormalizable interaction (Feebly Interacting Massive Particle, FIMP): never achieved thermal equilibrium
- χ pair production dominated by reactions at $T \sim m_{\chi}$: independent of T_R as long as $T_R \gg m_{\chi}$

Case 3: Freeze-in

Hall et al., arXiv:0911.1120

- Assume very weak, renormalizable interaction (Feebly Interacting Massive Particle, FIMP): never achieved thermal equilibrium
- χ pair production dominated by reactions at $T \sim m_{\chi}$: independent of T_R as long as $T_R \gg m_{\chi}$
- Final relic density proportional to cross section, independent of FIMP mass

Thermal WIMPs, FIMPs: Assumptions

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

Thermal WIMPs, FIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

Thermal WIMPs, FIMPs: Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- *H* at time of χ decoupling is known: partly testable at colliders

Thermal Gravitino Dark Matter

Each gravitino coupling gives factor $\frac{m_{\text{sparticle}}s}{m_{\tilde{G}}M_P}$ in cross section, if $m_{\tilde{G}} \ll \sqrt{s}$, $m_{\text{sparticle}}$

Thermal Gravitino Dark Matter

Each gravitino coupling gives factor $\frac{m_{\text{sparticle}}s}{m_{\tilde{G}}M_P}$ in cross section, if $m_{\tilde{G}} \ll \sqrt{s}$, $m_{\text{sparticle}}$

 $\implies \text{Most important } \tilde{G} \text{ production mechanism for } m_{\tilde{G}} \gtrsim \\ \text{MeV: associated production with other sparticle!} \\ \sigma_{\tilde{G}} \simeq \frac{1}{24\pi (m_{\tilde{G}}M_P)^2} \left(26g_s^2 M_{\tilde{g}}^2 + \dots \right)$

Thermal Gravitino Dark Matter

Each gravitino coupling gives factor $\frac{m_{\text{sparticle}}s}{m_{\tilde{G}}M_P}$ in cross section, if $m_{\tilde{G}} \ll \sqrt{s}$, $m_{\text{sparticle}}$

 $\Rightarrow \text{Most important } \tilde{G} \text{ production mechanism for } m_{\tilde{G}} \gtrsim \\ \text{MeV: associated production with other sparticle!} \\ \sigma_{\tilde{G}} \simeq \frac{1}{24\pi (m_{\tilde{G}}M_P)^2} \left(26g_s^2 M_{\tilde{g}}^2 + \dots \right)$

 \tilde{G} annihilation can be ignored; write Boltzmann eq. for $\tilde{Y}_{\tilde{G}} \equiv n_{\tilde{G}}/n_{\gamma}$:

$$\frac{d\tilde{Y}_{\tilde{G}}}{dT} = -\frac{n_{\gamma}\sigma_{\tilde{G}}}{4TH(T)}$$

Solution of Boltzmann eq.:

 $\tilde{Y}_{\tilde{G},0} = \frac{4n_{\gamma}(T_R)\sigma_{\tilde{G}}}{4H(T_R)} \propto T_R$ (assuming $\tilde{Y}_{\tilde{G}}(T_R) = 0$)

Solution of Boltzmann eq.:

 $\tilde{Y}_{\tilde{G},0} = \frac{4n_{\gamma}(T_R)\sigma_{\tilde{G}}}{4H(T_R)} \propto T_R$ (assuming $\tilde{Y}_{\tilde{G}}(T_R) = 0$)

$$\Longrightarrow \Omega_{\tilde{G}} h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$$

Solution of Boltzmann eq.:

 $\tilde{Y}_{\tilde{G},0} = \frac{4n_{\gamma}(T_R)\sigma_{\tilde{G}}}{4H(T_R)} \propto T_R$ (assuming $\tilde{Y}_{\tilde{G}}(T_R) = 0$)

$$\Longrightarrow \Omega_{\tilde{G}} h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$$

Inclusion of thermal corrections: e.g. Pradler & Steffen, hep-ph/0612291

Solution of Boltzmann eq.:

 $\tilde{Y}_{\tilde{G},0} = \frac{4n_{\gamma}(T_R)\sigma_{\tilde{G}}}{4H(T_R)} \propto T_R$ (assuming $\tilde{Y}_{\tilde{G}}(T_R) = 0$)

$$\Longrightarrow \Omega_{\tilde{G}} h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}$$

Inclusion of thermal corrections: e.g. Pradler & Steffen, hep-ph/0612291 In general, have to add $\Omega_{\text{NLSP}} \frac{m_{\tilde{G}}}{m_{\text{NLSP}}}$ from (late) decays of NLSPs. (BBN!)

Only consider *perturbative* decays here.

Only consider *perturbative* decays here.

 χ : DM particle; ϕ : inflaton

Only consider *perturbative* decays here.

 χ : DM particle; ϕ : inflaton

 $B(\phi \rightarrow \chi)$: Average number of χ particles produced per ϕ decay

Only consider *perturbative* decays here.

 χ : DM particle; ϕ : inflaton

 $B(\phi \rightarrow \chi)$: Average number of χ particles produced per ϕ decay

Instantaneous ϕ decay approximation: all inflatons decay at $T = T_R$.

Only consider *perturbative* decays here.

 χ : DM particle; ϕ : inflaton

 $B(\phi \rightarrow \chi)$: Average number of χ particles produced per ϕ decay

Instantaneous ϕ decay approximation: all inflatons decay at $T = T_R$.

Inflatons are non-relativistic when they decay.

Energy conserved during ϕ decay

$$\implies n_{\phi}m_{\phi} = \rho_{\mathrm{rad}}(T_R) = \frac{\pi^2}{30}g_*T_R^4$$

Energy conserved during ϕ decay

$$\implies n_{\phi}m_{\phi} = \rho_{\mathrm{rad}}(T_R) = \frac{\pi^2}{30}g_*T_R^4$$
$$\implies Y_{\chi}(T_R) = \frac{n_{\chi}(T_R)}{s(T_R)} = \frac{B(\phi \to \chi)n_{\phi}(T_R)}{s(T_R)}$$

Energy conserved during ϕ decay

$$\implies n_{\phi}m_{\phi} = \rho_{\mathrm{rad}}(T_R) = \frac{\pi^2}{30}g_*T_R^4$$
$$\implies Y_{\chi}(T_R) = \frac{n_{\chi}(T_R)}{s(T_R)} = \frac{B(\phi \to \chi)n_{\phi}(T_R)}{s(T_R)}$$
$$B(\phi \to \chi)\rho_{\mathrm{rad}}(T_R)$$

 $m_{\phi}s(T_R)$

Energy conserved during ϕ decay

$$\implies n_{\phi}m_{\phi} = \rho_{\mathrm{rad}}(T_R) = \frac{\pi^2}{30}g_*T_R^4$$
$$\implies Y_{\chi}(T_R) = \frac{n_{\chi}(T_R)}{s(T_R)} = \frac{B(\phi \to \chi)n_{\phi}(T_R)}{s(T_R)}$$
$$= \frac{B(\phi \to \chi)\rho_{\mathrm{rad}}(T_R)}{m_{\phi}s(T_R)}$$
$$= \frac{3}{4}\frac{T_R}{m_{\phi}}B(\phi \to \chi)$$

Energy conserved during ϕ decay

$$\implies n_{\phi}m_{\phi} = \rho_{\mathrm{rad}}(T_R) = \frac{\pi^2}{30}g_*T_R^4$$
$$\implies Y_{\chi}(T_R) = \frac{n_{\chi}(T_R)}{s(T_R)} = \frac{B(\phi \to \chi)n_{\phi}(T_R)}{s(T_R)}$$
$$= \frac{B(\phi \to \chi)\rho_{\mathrm{rad}}(T_R)}{m_{\phi}s(T_R)}$$
$$= \frac{3}{4}\frac{T_R}{m_{\phi}}B(\phi \to \chi)$$

If χ production and annihilation at $T < T_R$ is negligible, universe evolves adiabatically:

$$\implies \Omega_{\chi} h^2 = 2.1 \cdot 10^8 \frac{m_{\chi}}{m_{\phi}} \frac{T_R}{1 \text{ GeV}} B(\phi \to \chi)$$

• If $\chi = \text{LSP: expect } B(\phi \to \chi) \simeq 1$: Excludes charged LSP for $m_{\phi} > 2m_{\chi}, T_R \gtrsim 1 \text{ MeV!}$

- If $\chi = \text{LSP: expect } B(\phi \to \chi) \simeq 1$: Excludes charged LSP for $m_{\phi} > 2m_{\chi}, T_R \gtrsim 1 \text{ MeV!}$
- "Democratic" coupling: $B(\phi \rightarrow \chi) \simeq g_{\chi}/g_* \sim 10^{-2}$.

- If $\chi = \text{LSP: expect } B(\phi \to \chi) \simeq 1$: Excludes charged LSP for $m_{\phi} > 2m_{\chi}, T_R \gtrsim 1 \text{ MeV!}$
- "Democratic" coupling: $B(\phi \rightarrow \chi) \simeq g_{\chi}/g_* \sim 10^{-2}$.
- $\phi \to f \bar{f} \chi \chi$ (4-body): $B(\phi \to \chi) \sim \frac{\alpha_{\chi}^2}{96\pi^3} \left(1 - \frac{4m_{\chi}^2}{m_{\phi}^2}\right)^2 \left(1 - \frac{2m_{\chi}}{m_{\phi}}\right)^{5/2}$ (Assumes $\sigma(\chi \chi \leftrightarrow f \bar{f}) \sim \frac{\alpha_{\chi}^2}{m_{\chi}^2}, \ \phi \to f \bar{f}$ dominates.)

- If $\chi = \text{LSP: expect } B(\phi \to \chi) \simeq 1$: Excludes charged LSP for $m_{\phi} > 2m_{\chi}, T_R \gtrsim 1 \text{ MeV!}$
- "Democratic" coupling: $B(\phi \rightarrow \chi) \simeq g_{\chi}/g_* \sim 10^{-2}$.
- $\phi \to f\bar{f}\chi\chi$ (4-body): $B(\phi \to \chi) \sim \frac{\alpha_{\chi}^2}{96\pi^3} \left(1 - \frac{4m_{\chi}^2}{m_{\phi}^2}\right)^2 \left(1 - \frac{2m_{\chi}}{m_{\phi}}\right)^{5/2}$ (Assumes $\sigma(\chi\chi \leftrightarrow f\bar{f}) \sim \frac{\alpha_{\chi}^2}{m_{\chi}^2}, \ \phi \to f\bar{f}$ dominates.)
- Can be most important production mechanism for superheavy Dark Matter ($m_{\chi} \sim 10^{12}$ GeV) in chaotic inflation ($m_{\phi} \sim 10^{13}$ GeV); for LSP if $T_R \leq 0.03 m_{\chi}$; ...

• Different production mechanisms give very different results for $\Omega_{\chi}h^2$:

- Different production mechanisms give very different results for $\Omega_{\chi}h^2$:
- Thermal WIMP: $\Omega_{\chi}h^2 \propto \frac{1}{\langle \sigma_{\text{eff}}v \rangle}$, independent of T_R : most frequently studied case; needs $T_R \gtrsim 0.05 m_{\chi}$.

- Different production mechanisms give very different results for $\Omega_{\chi}h^2$:
- Thermal WIMP: $\Omega_{\chi}h^2 \propto \frac{1}{\langle \sigma_{\text{eff}}v \rangle}$, independent of T_R : most frequently studied case; needs $T_R \gtrsim 0.05 m_{\chi}$.
- WIMP that never was in equilibrium: $\Omega_{\chi}h^2 \propto e^{-2m_{\chi}/T_R}m_{\chi}^2 \langle \sigma_{\rm ann}v \rangle$

- Different production mechanisms give very different results for $\Omega_{\chi}h^2$:
- Thermal WIMP: $\Omega_{\chi}h^2 \propto \frac{1}{\langle \sigma_{\text{eff}}v \rangle}$, independent of T_R : most frequently studied case; needs $T_R \gtrsim 0.05 m_{\chi}$.
- WIMP that never was in equilibrium: $\Omega_{\chi}h^2 \propto e^{-2m_{\chi}/T_R}m_{\chi}^2 \langle \sigma_{\rm ann}v \rangle$
- Thermal gravitino production: $\Omega_{\tilde{G}}h^2 \propto \frac{T_R}{m_{\tilde{C}}}$.

- Different production mechanisms give very different results for $\Omega_{\chi}h^2$:
- Thermal WIMP: $\Omega_{\chi}h^2 \propto \frac{1}{\langle \sigma_{\text{eff}}v \rangle}$, independent of T_R : most frequently studied case; needs $T_R \gtrsim 0.05 m_{\chi}$.
- WIMP that never was in equilibrium: $\Omega_{\chi}h^2 \propto e^{-2m_{\chi}/T_R}m_{\chi}^2 \langle \sigma_{\rm ann}v \rangle$
- Thermal gravitino production: $\Omega_{\tilde{G}}h^2 \propto \frac{T_R}{m_{\tilde{C}}}$.
- Production from inflaton decay: $\Omega_{\chi}h^2 \propto \frac{m_{\chi}T_R B(\phi \rightarrow \chi)}{m_{\phi}}$.

- Different production mechanisms give very different results for $\Omega_{\chi}h^2$:
- Thermal WIMP: $\Omega_{\chi}h^2 \propto \frac{1}{\langle \sigma_{\text{eff}}v \rangle}$, independent of T_R : most frequently studied case; needs $T_R \gtrsim 0.05 m_{\chi}$.
- WIMP that never was in equilibrium: $\Omega_{\chi}h^2 \propto e^{-2m_{\chi}/T_R}m_{\chi}^2 \langle \sigma_{\rm ann}v \rangle$
- Thermal gravitino production: $\Omega_{\tilde{G}}h^2 \propto \frac{T_R}{m_{\tilde{C}}}$.
- Production from inflaton decay: $\Omega_{\chi}h^2 \propto \frac{m_{\chi}T_RB(\phi \rightarrow \chi)}{m_{\phi}}$.
- Only the thermal WIMP scenario can be tested using collider data and results from WIMP search experiments. Other scenarios can only be tested with additional input to constrain cosmology $(T_R, ...)$.