Embedding MSSM Inflation into the Minimal Left-Right Symmetric Model

Ju Min Kim

University of Bonn

22, Sep., 2008

Work in progress, with M. Drees

Outline

- Introduction
- MSSM Inflation
- 3 LR Symmetric Model
- 4 "MLRSM" Inflation
- Post-inflation
- 6 Summary

Slow-roll Inflation

- The universe dominated by a scalar field ("inflaton"), ϕ : $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$.
- Exponential expanding: $R(t) \propto e^{Ht}$.
- $\epsilon \equiv \frac{1}{2} M_P^2 (V'/V)^2 \ll$ 1; $\dot{\phi} = -\frac{V'}{3H}$ (Or, $|\eta \equiv M_P^2 V''/V| <<$ 1)
- "Reheating": After inflation, the inflaton oscillates around the global minimum and produces the entropy density.

(Lifted) Flat Directions in Supersymmetric Theories

The superpotential:

$$W = W_{renorm} + \sum_{n>3} \frac{\lambda}{M^{n-3}} \Phi^n$$
.

⇒ Flat directions in MSSM are lifted by soft SUSY-breaking terms and by non-renormalizable terms. [Gherghetta, Kolda, Martin]

⇒ The scalar potential:

$$V = \frac{1}{2} m_{\phi}^2 \phi^2 + A cos(n\theta + \theta_A) \frac{\lambda_n}{nM_D^3} \phi^n + \frac{\lambda_n^2}{M_D^2(n-3)} \phi^{2(n-1)}.$$

MSSM Inflation [Allahverdi, Enqvist, Mazumdar]

Only n=6 (LLe, udd) flat directions can be inflaton candidates. Parametrized by, e.g.,

$$L_{i} = \frac{1}{\sqrt{3}}(0 \quad \phi)^{T}; \quad L_{j} = \frac{1}{\sqrt{3}}(\phi \quad 0)^{T}; \quad e_{k} = \frac{1}{\sqrt{3}}\phi,$$

The scalar potential is:

$$V = \frac{1}{2}m_{\phi}^2\phi^2 - \frac{A\lambda_6}{6M_P^3}\phi^6 + \frac{\lambda_6^2}{M_P^6}\phi^{10}.$$

Tuning $A^2 = 40 m_{\phi}^2$, at the saddle point,

$$\phi_0 = \left(\frac{m_\phi M_P^3}{\sqrt{10}\lambda_6}\right)^{1/4}; \quad V(\phi_0) = \frac{4}{15}m_\phi^2\phi_0^2,$$

With $m_{\phi} \sim 1 \, \text{TeV}$, $\lambda_6 \sim 1$,

$$\phi_0 \sim 10^{14} GeV; \quad H_{inf} \sim rac{m_\phi \phi_0}{M_P} \sim (1-10) GeV;$$

$$n_{\rm S} \simeq 1 - {4 \over N_{\rm COBE}} \simeq 0.92; \quad \delta \simeq {m_\phi M_P \over \phi_0^2} N_{\rm COBE}^2 \sim 10^{-5}.$$

The Minimal Left-Right (LR) Symmetric Model [Aulakh et. al.]

- $U(1)_{B-L} \times SU(2)_R \rightarrow U(1)_Y$ by $SU(2)_R$ triplet Higgs.
- Heavy right-handed neutrino is naturally included. $(\Rightarrow m_{\nu} \sim m_{D}^{2}/M_{R})$
- Parity is broken spontaneously.
- Subgroup of SO(10).

The chiral superfields $(SU(3) \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R)$:

$$\begin{array}{ll} Q=(3,1/3,2,1), & Q_c=(3^*,-1/3,1,2), & L=(1,-1,2,1) \\ L_c=(1,1,1,2), & H=(1,0,2,2^*), & \overline{\Sigma}=(1,2,3,1) \\ \Sigma=(1,-2,3,1), & \overline{\Sigma}_c=(1,-2,1,3), & \Sigma_c=(1,2,1,3) \end{array}$$

The renormalizable superpotential: (i, j: family index)

$$W_{ren} = m_{\Sigma}(\Sigma \overline{\Sigma} + \Sigma_c \overline{\Sigma}_c) + Y_q^{ij} HQ_i Q_{cj} + Y_l^{ij} HL_i L_{cj} + \frac{i}{2} Y_N^{ij} (L_{ci} \overline{\Sigma}_c L_{cj} + L_i \overline{\Sigma} L_j).$$
The symmetry is broken by nonrenormalizable terms:

 $\lambda_{\alpha} = \lambda_{\alpha} (\nabla \nabla)^{2}$

$$W_{nr} \ni \frac{\lambda_{\sigma}}{4M_P} (\Sigma_c \overline{\Sigma}_c)^2$$

The LR symmetry breaking scale

$$10^{13} GeV \lesssim M_R (=\sqrt{rac{m_{\Sigma}M_P}{\lambda_{\sigma}}}) \lesssim 10^{16} GeV.$$

The chiral superfields $(SU(3) \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R)$:

$$\begin{array}{ll} Q=(3,1/3,2,1), & Q_c=(3^*,-1/3,1,2), & L=(1,-1,2,1) \\ L_c=(1,1,1,2), & H=(1,0,2,2^*), & \overline{\Sigma}=(1,2,3,1) \\ \Sigma=(1,-2,3,1), & \overline{\Sigma}_c=(1,-2,1,3), & \Sigma_c=(1,2,1,3) \end{array}$$

The renormalizable superpotential: (i, j: family index)

$$W_{ren} =$$

 $m_{\Sigma}(\Sigma\overline{\Sigma}+\Sigma_{c}\overline{\Sigma}_{c})+Y_{q}^{ij}HQ_{i}Q_{cj}+Y_{i}^{ij}HL_{i}L_{cj}+\frac{i}{2}Y_{N}^{ij}(L_{ci}\overline{\Sigma}_{c}L_{cj}+L_{i}\overline{\Sigma}L_{j}).$

The symmetry is broken by nonrenormalizable terms:

$$W_{nr} \ni \frac{\lambda_{\sigma}}{4M_P} (\Sigma_c \overline{\Sigma}_c)^2$$
.

The LR symmetry breaking scale:

$$10^{13} GeV \lesssim M_R (= \sqrt{rac{m_\Sigma M_P}{\lambda_\sigma}}) \lesssim 10^{16} GeV.$$

The Set-up

- $Q_cQ_cQ_cL_c$ flat direction: Lift by n=4 $Q_cQ_cQ_cL_c$. Parametrizing the fields such as $Q_{ci}=e^{i\theta_\phi}(\phi=0)^T, \quad Q_{cj}=e^{i\theta_\phi}(0=\phi)^T, \quad Q_{ck}=e^{i\theta_\phi}(0=\phi)^T, \quad L_{cj}=c_je^{i\theta_j}(\psi=0)^T, \quad L_{ck}=c_ke^{i\theta_k}(\psi=0)^T, \dots (j\neq k; c_j^2+c_k^2=1; c_j, c_k\in \mathbf{R}), \text{ flat directions:}$
 - $\psi = \phi$; $\overline{\sigma} = \sigma = 0$; $\cos(2\theta_j 2\theta_k) = 1 \frac{1}{2c_j^2 2c_k^2}$. ("LR-symmetric" flat direction)
 - $\psi=0;$ $\overline{\sigma}=\sqrt{-\frac{\phi^2}{4}+\frac{1}{4}\sqrt{\frac{64m_{\rm F}^2M_P^2}{\lambda_\sigma^2}+\phi^4}};$ $\sigma=\sqrt{\frac{\phi^2}{4}+\frac{1}{4}\sqrt{\dots}}.$ ("MSSM-like" flat direction)
- $\bullet \ \ W_{nr} = \tfrac{\lambda_{\sigma}}{4M_P} (\Sigma_c \overline{\Sigma}_c)^2 + \tfrac{\lambda_{4j}}{3M_P} \Phi^3 L_{cj} + \tfrac{\lambda_{4k}}{3M_P} \Phi^3 L_{ck}.$

The Dynamics

- (i) "LR-symmetric" direction ($\overline{\sigma} = \sigma = 0$)
 - Constraints:
 - Nucleon (non-)decay $\Rightarrow \lambda_4 \lesssim 10^{-8}$.
 - LR Symmetry breaking $\Rightarrow m_{\Sigma} \sim m_{\text{soft}}$.

•
$$V = V_{\sigma} + V_{\phi} + V_{c}$$
, where
$$V_{\sigma} = \left(m_{\Sigma} - \frac{\lambda_{\sigma}}{2M_{P}}\sigma\overline{\sigma}\right)^{2} (\sigma^{2} + \overline{\sigma}^{2}) + \frac{1}{2}m^{2}(\sigma^{2} + \overline{\sigma}^{2})$$
$$-\mu^{2}(\sigma\overline{\sigma} + h.c.) - \frac{\lambda_{\sigma}A_{\sigma}}{4M_{P}}(\sigma\overline{\sigma})^{2},$$
$$V_{\phi} = \frac{1}{2}m_{\phi}^{2}\phi^{2} - \frac{\lambda_{4}A_{4}}{4M_{P}}\phi^{4} + \frac{\lambda_{4}^{2}}{M_{P}^{2}}\phi^{6}.$$
$$\Rightarrow \phi_{0} = \sqrt{\frac{m_{\phi}M_{P}}{\lambda_{4}}}$$

⇒ Consistent with observation.

(ii) "MSSM-like" direction ($\overline{\sigma} \neq 0, \sigma \neq 0$)

We "integrate out" the $\tilde{L_c}$ first: $\tilde{L_c} \simeq - \frac{\frac{\lambda_4}{3M_P} \overline{\sigma}^* \phi^3}{\left(\overline{\sigma}^2 + \frac{\lambda_4^2 \phi^4}{M_P^2}\right)}$

$$\begin{split} \bullet & \phi \ll \textit{M}_{\textit{R}} : \textit{V} \simeq \phi^2 \left(\textit{m}^2 - \frac{\lambda^2 \textit{A} \phi^4}{\textit{M}_{\textit{P}}^2 \textit{M}_{\textit{R}}} + \frac{\lambda^4 \phi^8}{\textit{M}_{\textit{P}}^4 \textit{M}_{\textit{R}}^2} \right) \\ \Rightarrow & \textit{V} \rightarrow \textit{V}_{\textit{MSSM}}, \text{ with } \lambda^2 \frac{\textit{M}_{\textit{P}}}{\textit{M}_{\textit{R}}} \rightarrow \lambda. \\ \Rightarrow & \text{Smaller } \phi_0. \end{split}$$

- $\phi \gg M_R$
 - $\overline{\sigma} \gg \frac{\phi^2}{M_P}$: $V \simeq \phi^2 \left(m^2 \frac{\lambda^2 A \phi^5}{M_P^2 M_R^2} + \frac{\lambda^4 \phi^{14}}{M_P^4 M_R^8} \right)$ \Rightarrow Very complicated fine-tuning needed.
 - $\overline{\sigma} \ll \frac{\phi^2}{M_P}$: $V \simeq m^2 \phi^2 A M_R^2 \phi + \frac{\lambda^2}{M_P^2} \phi^6$ \Rightarrow No flat potential.

 \Longrightarrow Works only for $\phi_0 < M_R$.

(ii') Assumption: \exists A symmetry suppressing the $Q_c Q_c Q_c L_c$. $\Rightarrow W_{nr} = \frac{\lambda_\sigma}{4M_P} (\Sigma_c \overline{\Sigma}_c)^2 + \frac{\lambda_7}{6M^4} \Phi^6 \Sigma_c$.

 \Rightarrow Slightly larger ϕ_0 (compared to that in MSSM inflation), but works.

Preheating

Basic picture [Kofman, Linde, Starobinsky]

Assuming $V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{1}{2}g^2\phi^2\chi^2$, EOM for quantum fluctuations of the scalar field χ :

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2(t)} + g^2\Phi(t)^2\sin^2(m_\phi t)\right)\chi_k = 0.$$

(a: scale factor, Φ: amplitude of oscillations)

- ⇒ Parametric resonance can happen!
- \Rightarrow Particle production: $n_k = \frac{\omega_k}{2} \left(\frac{|\dot{\chi}_k|^2}{\omega_k^2} + |\chi_k|^2 \right) \frac{1}{2}$.
- Post-MSSM inflation [Allahverdi, Enqvist, Garcia-Bellido, Jokinen, Mazumdar]
 The gauge bosons and gauginos are produced when the inflaton passes through the origin.
 - ⇒ Get "fatten"s when the inflaton oscillates
 - ⇒ Decays to the matter fields

Preheating

Basic picture [Kofman, Linde, Starobinsky]

Assuming $V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{1}{2}g^2\phi^2\chi^2$, EOM for quantum fluctuations of the scalar field χ :

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2(t)} + g^2\Phi(t)^2\sin^2(m_\phi t)\right)\chi_k = 0.$$

(a: scale factor, Φ: amplitude of oscillations)

- ⇒ Parametric resonance can happen!
- \Rightarrow Particle production: $n_k = \frac{\omega_k}{2} \left(\frac{|\dot{\chi}_k|^2}{\omega_k^2} + |\chi_k|^2 \right) \frac{1}{2}$.
- Post-MSSM inflation [Allahverdi, Enqvist, Garcia-Bellido, Jokinen, Mazumdar]
 The gauge bosons and gauginos are produced when the inflaton passes through the origin.
 - ⇒ Get "fatten"s when the inflaton oscillates.
 - ⇒ Decays to the matter fields.

Particle Production

• Post-"MLRSM" inflation - "LR symmetric" direction. $SU(2)_R \times U(1)_{B-L}$ Symmetry breaking

$$\Rightarrow \exists \delta_0 \ (\sim \lambda_\sigma rac{M_R^2}{M_P})$$
 [Aulakh et. al.]

- \Rightarrow All ϕ (\sim *TeV*), $\tilde{L_c}$ (\sim 10¹⁴*GeV*), δ_0 (\sim *TeV*) start to oscillate.
- $\Rightarrow \delta_0$ slowly changing, $\tilde{\mathcal{L}_c}$ rapidly fixed at the minimum.

Summary Prospects

- Both n = 4 and n = 7 operator in the $Q_c Q_c Q_c L_c$ direction can provide us the slow-roll inflation, either by tuning the nonrenormalizable coupling or the initial conditions.
 - "LR-symmetric" direction: OK, with suppressed nonrenormalizable couplings.
 - "MSSM-like" direction: ϕ_0 should lie below M_R .
- The post-inflation cosmology is very different along each branch:
 - "LR-symmetric" direction: Neutral $SU(2)_R$ triplet Higgs $(m \sim \mathcal{O}(\text{TeV}))$ is produced.
 - "MSSM-like" direction: All vacuum energy is transferred to the radiation

Summary Prospects

- Both n = 4 and n = 7 operator in the $Q_c Q_c Q_c L_c$ direction can provide us the slow-roll inflation, either by tuning the nonrenormalizable coupling or the initial conditions.
 - "LR-symmetric" direction: OK, with suppressed nonrenormalizable couplings.
 - "MSSM-like" direction: ϕ_0 should lie below M_R .
- The post-inflation cosmology is very different along each branch:
 - "LR-symmetric" direction: Neutral $SU(2)_R$ triplet Higgs $(m \sim \mathcal{O}(\text{TeV}))$ is produced.
 - "MSSM-like" direction: All vacuum energy is transferred to the radiation.

- Combining the information from cosmological observation with the collider signal, the model can be strongly constrained.
- Implications on Baryogenesis will be explored.