◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Color-octet scalars of N=2 SUSY at the LHC

Ju Min Kim

University of Bonn

July, 9, 2009

based on Choi, Drees, Kalinowski, JMK, Popenda, and Zerwas arXiv:0812.3586

Outline

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

Introduction

Minimal Supersymmetric Standard Model (MSSM)

- One fermionic generator is assumed. (N=1)
 ⇒ Each SM particle (+one more Higgs) has its superpartner (← supermultiplet)
- R-parity conservation is assumed.
 - \Rightarrow · Pairwise production of superparticles!
 - · Lightest Supersymmetric Particle (LSP) stable!
- Electrically neutral, colorless Majorana fermion is assumed to be the LSP.
- SUSY breaking sector is manifested as free parameters.
 ⇒ Different parameter set gives different collider signals.
- Typical LHC signals are [e.g. The ATLAS Collaboration, arXiv:0901.0512]: Pairwise production of $\tilde{q}, \tilde{g} \rightarrow$ cascade decays \rightarrow 2-4 hard jets (+softer QCD jets) + missing E_T from LSP.

N=1/N=2 Hybrid Model

 Motivations: Demands for Dirac gaugino [Choi, Drees, Freitas, Zerwas];
 "Supersoft" SUSY breaking [Fox, Nelson, Weiner]; String-inspired Brane models [Antoniadis et al.]; ...

Matter fermions are chiral

 \Rightarrow We adopt N=1/N=2 hybrid scheme; i.e. N=2 mirror (s)fermions to be very heavy, and expanding N=2 only in the gauge sector.

• N=2 QCD hypermultiplet: $\hat{g}(\{g_{\mu}, \tilde{g}\}) + \hat{g}'(\{\sigma, \tilde{g}'\})$

Furthermore, we assume

- pure Dirac gluino;
- Degenerate scalar/pseudoscalar component of σ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Color-octet Scalar gluon, σ

- R-parity even \Rightarrow single production possible (..in principle)!
- Mass given by superpotential: W ⊃ ½M'₃ĝ'^aĝ'^a + soft breaking terms: L ⊃ -m²_σ|σ²| m²_{σσ}σσ.
- Interactions are SUSY breaking trilinear interaction with squarks: $\mathcal{L} \supset -g_S M_3^D \sigma^a \frac{\lambda_{ij}^a}{\sqrt{2}} \sum_q (\tilde{q}_{Li}^* \tilde{q}_{Lj} - \tilde{q}_{Ri}^* \tilde{q}_{Rj})$ + Gauge interaction with gluons/gluinos: E.g. $\mathcal{L} \supset -\sqrt{2} ig_S f^{abc} \overline{\tilde{g}}_{DL}^a \tilde{g}_{DR}^b \sigma^c$ \Rightarrow At tree level, decays to gluino or squark pairs!

Introduction	Set-Up	Phenomenology	Summary

Coupling to gluons/quarks through triangle loop: E.g.

 \Rightarrow At one-loop level, decays to top-quarks or gluon pairs!

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ

The relevant Feynmann diagrams:

 \Rightarrow Identical (modulo color factors) to squark-pair production.

The $\sigma\sigma^*$ cross sections exceed those of squarks:

$$\frac{\sigma[gg \to \sigma\sigma^*]}{\sigma[gg \to \tilde{q}_3\tilde{q}_3^*]} = \begin{cases} \frac{\operatorname{tr}([F^a, F^b][F^a, F^b]]}{\operatorname{tr}(\frac{\lambda a}{2}, \frac{\lambda b}{2}]} = \frac{216}{28/3} \simeq 23\\ \text{for } \beta \to 0,\\ \frac{\operatorname{tr}(2F^aF^bF^bF^a + F^aF^bF^aF^b)}{\operatorname{tr}(2\frac{\lambda^a}{2}, \frac{\lambda^b}{2}, \frac{\lambda^b}{2}, \frac{\lambda^a}{2}, \frac{\lambda^b}{2}, \frac{\lambda^a}{2}, \frac{\lambda^a}{$$

The partonic branching ratio:

▲□▶▲□▶▲目▶▲目▶ 目 のへで

σ productions at the LHC:

◆ロ〉 ◆母〉 ◆臣〉 ◆臣〉 ○臣 ● 今々で

Introduction	Set-Up	Phenomenology	Summary
σ decays			

Recall: \exists SUSY breaking trilinear interaction with squarks + gauge interaction with gluinos.

At tree level

•
$$\sigma \rightarrow \tilde{g}\tilde{g}(\rightarrow qq\tilde{q}\tilde{q} \rightarrow qqqq + \tilde{\chi}\tilde{\chi})$$
, with
 $\Gamma[\sigma \rightarrow \tilde{g}_D\bar{\tilde{g}}_D] = \frac{3\alpha_s M_\sigma}{4} \beta_{\tilde{g}} (1 + \beta_{\tilde{g}}^2)$.
• $\sigma \rightarrow \tilde{q}\tilde{q}(\rightarrow qq + \tilde{\chi}\tilde{\chi})$, with
 $\Gamma[\sigma \rightarrow \tilde{q}\tilde{q}^*] = \frac{\alpha_s}{4} \frac{|M_0^p|^2}{M_\sigma} \beta_{\tilde{q}}$.

• At one-loop level:

•
$$\sigma \rightarrow t\bar{t}(\rightarrow b\bar{b}W^+W^-)$$
, with
 $\Gamma(\sigma \rightarrow q\bar{q}) = \frac{9\alpha_s^3}{128\pi^2} \frac{|M_3^D|^2 m_q^2}{M_\sigma} \beta_q \left[\left(M_\sigma^2 - 4m_q^2 \right) |\mathcal{I}_S|^2 + M_\sigma^2 |\mathcal{I}_P|^2 \right].$
 $(\mathcal{I}_S, \mathcal{I}_P: \text{ effective scalar (S), pseudoscalar (P) couplings.)}$
• $\sigma \rightarrow gg$, with
 $\Gamma(\sigma \rightarrow gg) = \frac{5\alpha_s^3}{384\pi^2} \frac{|M_3^D|^2}{M_\sigma} \left| \sum_q \left[\tau_{\bar{q}_L} f(\tau_{\bar{q}_L}) - \tau_{\bar{q}_R} f(\tau_{\bar{q}_R}) \right] \right|^2.$
 $(\tau_{\bar{q}_{L,R}} = 4m_{\bar{q}_{L,R}}^2 / M_\sigma^2; f(\tau) = -\frac{1}{2} \int_0^1 \frac{dx}{x} ln(1 - 4x(1 - x)/\tau).)$

・ロット (四)・(川)・(日)・(日)・(日)・

・ロン ・聞 と ・ ヨ と ・ ヨ と

3

The decay branching ratios:

 $(m_{\tilde{q}_{B}} = 0.95m_{\tilde{q}_{L}}; m_{\tilde{t}_{I}} = 0.9m_{\tilde{q}_{L}}; m_{\tilde{t}_{B}} = 0.8m_{\tilde{q}_{L}})$

- Two-body final states dominate.
- Above thresholds, the partial width into gluinos always dominate.

Signals at the LHC

• Above all thresholds:

 $pp \rightarrow \tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow$ (isotropically distributed, hard) 8 jets + 4 LSP's.

 \Rightarrow Easily distinguishable!

- If m_{q̃} ≤ m_{g̃} & ∃significant L-R mixing: pp → t̃₁t̃₁t̃₁*t̃₁* t̃₁* → 4 LSP's + many hard jets.
- If $M_{\sigma} > 2m_{\tilde{g}} \gtrsim 2m_{\tilde{q}}$: pp $\rightarrow \tilde{q}\tilde{q}^*\tilde{g}\tilde{g} \rightarrow 4$ LSP's + many hard jets.
- If kinematically allowed: $pp \rightarrow tt\overline{t}\overline{t}$
 - \Rightarrow Direct M_{σ} reconstruction might be possible!

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

- N=2 gauge hypermultiplet includes color-octet scalar, *σ*.
- The signals at the LHC from σ are very different from those of MSSM.
- Depending on the mass spectra, either multi-jet with high sphericity and large missing E_T, or four top quarks should be observed.