DM Relic density at one loop effective coupling approach *Work in progress*

(Suchita Kulkarni)

Manuel Drees, Arindam Chatterjee

kulkarni@th.physik.uni-bonn.de

Physics Institute

University of Bonn

Outline

- Dark matter the standard stuff
- SUSY non decoupling
- Idea of effective couplings
- Renormalization framework
- Current implementation plan
- How exactly the technicalities
- Current status of our work
- The future

Yeah! We all know it!

Yeah! We all know it!

- Precision cosmology
- ²/_q)
 Percent accuracy with Plank
 - Collider interplay

The beauty of broken SUSY

Unbroken SUSY - equal couplings for the standard and SUSY particles

 $g(e\tilde{e}\tilde{\gamma}) = g(e\,e\gamma)$

- SUSY breaking ⇒ difference between SUSY and SM couplings grows with the SUSY breaking scale
- Same RGE above SUSY breaking scale, SUSY and SM particle decoupling at different scales due to mass hierarchy
- At one loop comparision between two couplings

$$(Q < m_{\tilde{q}}) \\ \frac{\tilde{\alpha}(Q)}{\alpha(Q)} - 1 = \frac{\alpha(m_{\tilde{q}})}{\alpha(Q)} - 1 = \beta \log \frac{m_{\tilde{q}}}{m_{q}}, \quad \text{On-shell}$$

Can we use this property of SUSY breaking to perform calculations at one loop?

Renormalization scheme

- -ino -fermion -sfermion process renormalized
- On-shell scheme in the -ino and sfermion sector
- Inputs Chargino and bino-like neutralino masses in -ino sector

Input parameters	
SM	M_w , M_z
	$lpha_{em}$
-ino	$M_{\chi_1}^-, M_{\chi_2}^-$
	$M^0_{\chi_i}$
Other	$\tan\beta$
	$M_{\tilde{f}_i}$

- Requires consistant on-shell renormalization scheme
 - Renormalization of $\tan \beta$ simplest not unique, nor the best
- The most bino-like neutralino on-shell, not necessarily LSP

Effective couplings - this work

A finite set of counter-terms introduced to the bare Lagrangian

$$\begin{split} \Delta N_{\alpha 1} &\equiv N_{\alpha 1} \begin{pmatrix} \frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{\delta t_W}{t_W} \end{pmatrix} + \sum_{\beta \neq \alpha} N_{\beta 1} Z_R^{\alpha \beta} \\ \Delta N_{\alpha 2} &\equiv N_{\alpha 2} \begin{pmatrix} \frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} \end{pmatrix} + \sum_{\beta \neq \alpha} N_{\beta 2} Z_R^{\alpha \beta} \\ \Delta N_{\alpha 3} &\equiv N_{\alpha 3} \begin{pmatrix} \frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{1}{2} \frac{\delta M_w^2}{M_w^2} - \frac{\delta \cos \beta}{\cos \beta} \end{pmatrix} + \sum_{\beta \neq \alpha} N_{\beta 3} Z_R^{\alpha \beta} \\ \Delta N_{\alpha 4} &\equiv N_{\alpha 4} \begin{pmatrix} \frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{1}{2} \frac{\delta M_w^2}{M_w^2} - \frac{\delta \sin \beta}{\sin \beta} \end{pmatrix} + \sum_{\beta \neq \alpha} N_{\beta 4} Z_R^{\alpha \beta} \\ hep-ph/0207364v2, Guasch, Hollik, Sola \end{split}$$

Effective couplings - this work

A finite set of counter-terms introduced to the bare Lagrangian

$$\Delta N_{\alpha 1} \equiv N_{\alpha 1} \left(\frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{\delta t_W}{t_W} \right) + \sum_{\beta \neq \alpha} N_{\beta 1} Z_R^{\alpha \beta}$$

$$\Delta N_{\alpha 2} \equiv N_{\alpha 2} \left(\frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} \right) + \sum_{\beta \neq \alpha} N_{\beta 2} Z_R^{\alpha \beta}$$

$$\Delta N_{\alpha 3} \equiv N_{\alpha 3} \left(\frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{1}{2} \frac{\delta M_w^2}{M_w^2} - \frac{\delta \cos \beta}{\cos \beta} \right) + \sum_{\beta \neq \alpha} N_{\beta 3} Z_R^{\alpha \beta}$$

$$\Delta N_{\alpha 4} \equiv N_{\alpha 4} \left(\frac{\delta g}{g} + \frac{\delta Z_R^{\alpha}}{2} + \frac{1}{2} \frac{\delta M_w^2}{M_w^2} - \frac{\delta \sin \beta}{\sin \beta} \right) + \sum_{\beta \neq \alpha} N_{\beta 4} Z_R^{\alpha \beta}$$

hep-ph/0207364v2, Guasch, Hollik, Sola

- Neutralino coupling matrices corrected
- Since -ino sfermion fermion coupling \propto mixing matrix, these are called effective coupling
- Only include all two point correlation functions
- Process dependent corrections

DM Relic density at one loop -effective coupling approach - p. 7

How exactly - the technicalities

How exactly - the technicalities

First results

channel annihilation

Rich structure associated with the nature of LSP DM Relic density at one loop -effective coupling approach - p. 10

First results

Future Plans

- Effective couplings process dependent in MSSM
- Need to include the higgs -ino -ino couplings as well
- No known way to find effective coupling for this vertex so far
- A comparision to full one loop relic density calculations necessary
- Effect of initial and final state radiation

We expect the final results in near future ...

Back - up

Reconstruction of parameters

Reconstruction of parameters

- SLHA accord not gauge invariant
- Threshold corrections to masses but MSSM parameters in \overline{DR}
- Higgsino wino nature of $\tilde{\chi}^+$ determined by couplings
- M_1 extracted via bino-like neutralino