Determination of SUSY Parameters at the LHC

Nicki Bornhauser In Collaboration with Manuel Drees

University of Bonn

April 1st, 2011 DPG-Frühjahrstagung Karlsruhe 2011

Nicki Bornhauser

University of Bonn

Outlook and Summary

- Observables
- Proof of Concept
- Outlook and Summary

・ロト ・聞 ・ ・ 声 ・ ・ 聞 ・ うぐら

Nicki Bornhauser

University of Bonn

- Until the end of 2010 the Large Hadron Collider (LHC) delivered around $48 \, {\rm pb}^{-1}$ of data from proton-proton collisions
- Around $1\,{\rm fb}^{-1}$ of data are estimated at the end of 2011 \rightarrow The LHC is taking data!
- Soon we may see signs of new physics. This new physics could be some variety of Supersymmetry (SUSY)
- $\rightarrow\,$ What are the parameters of the underlying theory?!

University of Bon

Det	ermination	of SUSY	Parameters	the	LHC
	ntroductio				

- There are programs like Fittino^a or SFitter^b to determine SUSY parameters
- These methods use mainly kinematical information about the measurement like masses, widths or edges in mass spectra (cross sections, branching fractions are also used)
- \rightarrow Our method relies mainly on dynamical instead of kinematical information of the measurement

^aP. Bechtle et. al., Comput. Phys. Commun. **174**, 47 (2006), arXiv:hep-ph/0412012

^bR. Lafaye et. al., Eur. Phys. J. C 54, 617 (2008), arXiv:hep-ph/0709.3985

・ロト・(聞)・ (目)・(目)・(ロ)・(の)

Nicki Bornhauser

- We look at 85 mostly dynamical observables to differentiate between different models → Count numbers!
- 12 lepton classes with each 7 observables and the total cross section

12 classes depending on the number of leptons (electrons, muons and corresponding antiparticles):

- 01: Events with no leptons
- $1/^{-}(1/^{+})$: Events with one negative (positive) charged lepton
- 21⁻ (21⁺): Events with two negative (positive) charged leptons
- *I*⁺_i*I*[−]_i (*I*⁺_j*I*[−]_{j; j≠i}): Events with two opposite-sign charged leptons with same (different) flavor, i.e. for example e⁻e⁺ (e⁻μ⁺)

- *l_i⁻l_j⁻l_j⁺* (*l_i⁺l_j⁺l_j⁻*): Events with three leptons and overall negative (positive) charge, i.e. there are at least two negative (positive) charged leptons. There is an opposite-sign charged lepton pair with same flavor. For example e⁻μ⁻μ⁺ (e⁺μ⁻μ⁺)
 l_i⁻l_j⁻l_k[±] (*k_j⁺ k_j⁺ for* + (*l_i⁺ l_j⁺ l_k[±]* (*k_j⁺ k_j⁻ for* -): Events with three leptons and overall negative (positive) charge, i.e. there are at least two negative (positive) charged leptons. There is **NO** opposite-sign charged lepton pair with same flavor. For example e⁻e⁻μ⁺ (e⁺e⁺μ⁻)
- 41: Events with four or more leptons

Determination of SUSY	Parameters	at the	LHC
└─ Observables			
Saved Information			

For each class 7 observables are looked at:

- (n): "Average" number of events within a class, i.e. the number of class events divided by the total number of events
- $\langle n_{\tau^-} \rangle$ ($\langle n_{\tau^+} \rangle$): Average number of tagged τ^- (τ^+) within a class event
- ⟨n_b⟩: Average number of tagged b-hadrons (b-jets) within a class event
- $\langle n_j \rangle$: Average number of (non-b-) jets within a class event
- $\langle n_i^2 \rangle$: Average squared number of jets within a class event
- $\langle H_T \rangle$: Average value of H_T within a class event (H_T is the sum over the p_T values of all "hard" objects)

- 283 degenerate pairs of models which cannot be distinguished at the LHC using conventional methods^a
- SUSY model with 15 free parameters
- 1808 observables are investigated (dynamical as well as kinematical information)

 $\rightarrow\,$ Can we distinguish some of these model pairs with our observables?!

^aN. Arkani-Hamed et. al., JHEP 0608, 070 (2006), arXiv:hep-ph/0512190

Nicki Bornhauser

- Simulate the models with Herwig++^a for a center of mass energy $\sqrt{s} = 14 \, {\rm TeV}$ and an integrated luminosity of $10 \, {\rm fb}^{-1}$
- Furthermore use SOFTSUSY^b, SUSY-HIT^c, and FastJet^d
- The events have to pass certain cuts to reduce Standard Model background

^aM. Bähr *et. al.*, Eur. Phys. J. C **58**, 639 (2008), arXiv:hep-ph/0803.0883 ^bB.C. Allanach, Comput. Phys. Commun. **143**, 305 (2002), arXiv:hep-ph/0104145

^cA. Djouadi *et. al.*, Acta Phys. Polon. B **38**, 635 (2007), arXiv:hep-ph/0609292

^dM. Cacciari, G.P. Salam, Phys. Lett. B **641**, 57 (2006), arXiv:hep-ph/0512210

Determination of SUSY Parameters at the LHC

• Calculate χ^2 to compare the models:

$$\chi^2_{AB} = \sum_{i,j} (s^A_i - s^B_i) V^{-1}_{ij} (s^A_j - s^B_j)$$

 $s_i^{A(B)}$ is the signature *i* of the model A(B) V^{-1} is the inverse of the covariance matrix $V_{ij} = cov[s_i, s_j]$ • V^{-1} is mostly a diagonal matrix with entries

$$\frac{1}{\sigma^2(s^A_i) + \sigma^2(s^B_i)},$$

because only $\langle n_j \rangle$ and $\langle n_j^2 \rangle$ are correlated. $\sigma^2(s_i^A)$ is the variance of the observable s_i^A

Nicki Bornhauser

- The smaller χ^2_{AB} the more similar look the signatures of the two different models in an experiment
- Look at the p-value of the calculated χ^2_{AB} :

$$p = \int_{\chi^2_{AB}}^{\infty} f(z, n_d) dz$$

 $f(z, n_d)$ is the χ^2 probability density function and n_d is the number of degrees of freedom, i.e. the number of summed signatures

→ The p-value gives the probability that an observed χ^2 is bigger than χ^2_{AB} , if both signatures originate from the same model

Compare 70 SAME models with different seeds in Herwig++:
Calculate the average p-value of the pairs

- Change the minimal number of class events required for comparison
- $\langle p
 angle pprox 0.68$ can be reached with $p_{min} pprox 0.04$

Nicki Bornhauser

University of Bonn

Compare the degenerated pairs:

- Say model pair can be differentiated if p < 0.01
- 70 models lead to 42 degenerated pairs
- 8 out of 42 pairs have values $p \ge 0.01$ and still would be degenerated

Nicki Bornha<u>user</u>

University of Bonn

- It seems to be possible to distinguish between most of the models for the degenerated pairs
- Our mostly dynamical observables seem to be useful for parameter determination
- Using more observables does not automatically improve the parameter determination
- Use the observables to determine parameters, e.g. using a Neural Network

Thank you for your attention!

Nicki Bornhauser

University of Bonn