Implications of Compressed Supersymmetry for Collider and Dark Matter Searches

Eun-Kyung Park Bonn University, Germany

 $in\ collaboration\ with$

H. Baer(Florida State U.), A. Box and X. Tata (U.of Hawaii) : JHEP 0708 (2007) 060

ENTApP Visitor Program, DESY, Hamburg February 28, 2008

Outline

- Introduction
 - \star Neutralino Dark matter
 - $\star\,$ Review of mSUGRA
- SUSY models without universality in SSB terms
 - \star Non-universal scalar mass model
 - \star Non-universal gaugino mass model
- NUGM models at Colliders
- Compressed SUSY model
- Summary and Conclusion

Dark Matter

- Properties of Dark Matter
 - not detected visibly
 - inferred from gravitational effects
 - dominant composition of matter in our universe
 - no DM candidate in the SM

http://map.gsfc.nasa.gov

- Evidence for Dark Matter
 - Galactic Clustering
 - Rotation Curves

- Gravitational Lensing
- Cosmic Microwave Background

Eun-Kyung Park Implications of Compressed SUSY for Collider and Dark matter Searches 3

• • •

Dark Matter Candidates

- Baryonic dark matter (MACHOs): small fraction of total DM
- Non-baryonic dark matter
 - Hot dark matter: ultra relativistic
 - Warm dark matter: relativistic
 - Cold dark matter: non-relativistic
 - * Axion
 - * WIMPs (Weakly Interacting Massive Particles): Neutralino (SUSY),
 KK-photon (extra dim. th.), branon (large extra dim. th.), ...
 - * SuperWIMPs: gravitino
 - * many other possibilities

Some Dark Matter Candidate Particles

Neutralino Dark Matter

- Dark Matter should be non-baryonic (no candidate in the SM), non-relativistic (cold), stable(or long-lived), weakly (or super-weakly) matter
- Flat universes in the ΛCDM cosmological model are characterized by baryon density, matter density, vacuum density, expansion rate(h)
- From the WMAP results, the cold dark matter density of the universe is $\Omega_{CDM}h^2 = 0.111^{+0.011}_{-0.015}$ (upper bound is a tight constraint on SUSY models containing DM candidates : DM may consist of several components)
- In SUSY models with *R*-parity conservation
- $\Rightarrow \text{ the Lightest Supersymmetric Particle(LSP) is absolutely stable} \\\Rightarrow \text{ lightest neutralino } \tilde{Z}_1 \text{ is the LSP in most of MSSM parameter space} \\\implies \tilde{Z}_1 \text{ is good candidate for Cold Dark Matter (CDM)}$
- number density is governed by Boltzmann equation, $dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$

 \Rightarrow requires evaluating many thousands Feynman diagrams

 \implies high (co-)annihilation cross section implies low relic abundance

Review of mSUGRA

• Parameter Space :

 $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

• WMAP allowed Regions : Region 1. $\tilde{\tau}$ co-annihilation region at low m_0

Region 2. bulk region at low m_0 and $m_{1/2}$

- light sleptons (LEP2 excluded)

Region 3. A-funnel

- **H**, **A** resonance annihilation

Region 4. FP/HB region at large m_0 , small

 μ

- mixed higgsino dark matter (MHDM)
- In most of the parameter space of the mSUGRA model, a value of neutralino relic density is beyond the WMAP bound $\Omega_{CDM}h^2 = 0.111^{+0.011}_{-0.015}$

SUSY models without universality

- Non-universal scalar mass models
 - Generation non-universality: Normal scalar mass hierarchy (NMH)
 - Non-universal Higgs mass: one extra parameter case (NUHM1 $_{\mu}$, NUHM1 $_{A}$)
 - non-universal Higgs mass: two extra parameter case (HS-Higgs Splitting)
- Non-universal gaugino mass models
 - Mixed Wino Dark Matter (MWDM)
 - Bino-Wino Co-Annihilation Scenario (BWCA)
 - Low $|M_3|$ Dark Matter: Compressed SUSY (LM3DM)
 - High $|M_2|$ Dark Matter: left-right split SUSY (HM2DM)
- Some benchmark cases with

 $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) = 300 \text{ GeV}, 300 \text{ GeV}, 0, 10, +1$ and $m_t = 171.4 \text{ GeV}$

for more details, see Baer, Mustafayev, EKP and Tata, arXiv:0802.3384

Parameter space of SUSY models without universality

- Non-universal scalar mass models
 - NMH: $m_0(1,2), m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$ $m_0(1,2)$: first/second generation, $m_0(3) = m_{H_u} = m_{H_d} \equiv m_0$: remaining dial $m_0(1,2)$ to low enough to bulk (co-)annihilation via light sleptons
 - NUHM1_µ, NUHM1_A: m_0 , δ_{ϕ} , $m_{1/2}$, A_0 , $\tan\beta$, $sign(\mu)$ $m_{\phi} = m_0(1 + \delta_{\phi})$, $m_{H_u}^2 = m_{H_d}^2 \equiv sign(m_{\phi})|m_{\phi}|^2$ $m_{\phi} >> m_0$: small μ and MHDM, $m_{\phi} < 0$: $m_A \sim 2m_{\tilde{Z}_1}$
 - HS: $m_0, m_{H_u}^2$ (equivalently μ), $m_{H_d}^2$ (equivalently m_A), $m_{1/2}, A_0, \tan\beta, sign(\mu)$ $m_{H_{u,d}}^2 = m_0^2 \ (1 \mp \delta_H)$ $\delta_H < 0$: low μ and low $m_A, \delta_H > 0$: WMAP region via $\tilde{l}_L/\tilde{\nu}$ or \tilde{u}_R/\tilde{c}_R co-annihilation
- Non-universal gaugino mass models
 - MWDM: m_0 , M_1 (or M_2), $m_{1/2}$, A_0 , $\tan\beta$, $sign(\mu)$
 - BWCA: same as MWDM but M_1 and M_2 are in opposite sign
 - LM3DM: $m_0, M_3, m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - HM2DM: $m_0, M_2, m_{1/2}, A_0, \tan\beta, sign(\mu)$

parameter	mSUGRA	NMH	$\mathrm{NUHM1}_{\mu}$	$\mathrm{NUHM1}_A$	HS
special		$m_0(1,2)$	m_{ϕ}	m_{ϕ}	δ_H
value		54	549	-728	-1.36
μ	385.1	386.5	105.8	748.5	269.3
$m_{ ilde g}$	729.7	722.1	731.4	733.4	728.9
$m_{ ilde{u}_L}$	720.8	658.4	724.3	720.5	720.1
$m_{{ ilde t}_1}$	523.4	526.5	484.1	624.5	505.8
$m_{\tilde{b}_1}$	656.8	659.8	642.2	689.5	645.4
$m_{\tilde{e}_L}$	364.5	216.2	364.8	365.8	373.4
$m_{ ilde{e}_R}$	322.3	128.9	322.5	321.9	301.8
$m_{ ilde{ au}_1}$	317.1	317.6	317.8	316.4	299.3
$m_{\widetilde{W}_2}$	411.7	412.7	264.7	754.8	321.1
$m_{\widetilde{W}_1}$	220.7	219.5	91.1	234.9	196.6
$m_{\widetilde{Z}_2}$	220.6	219.4	117.4	234.5	198.1
$m_{\widetilde{Z}_1}$	119.2	118.4	69.0	121.5	115.4
m_A	520.3	521.9	584.5	268.5	279.0
m_{H^+}	529.8	531.4	593.8	281.6	292.0
m_h	110.1	110.1	109.8	110.5	109.8
$\Omega_{\widetilde{Z}_1} h^2$	1.1	0.10	0.11	0.11	0.10
$\sigma_{SI}(\widetilde{Z}_1p)$	$2.1 \times 10^{-9} \text{ pb}$	$2.1 \times 10^{-9} \text{ pb}$	$7.8 \times 10^{-8} \text{ pb}$	$1.2 \times 10^{-9} \text{ pb}$	$2.7 \times 10^{-8} \text{ pb}$
$R_{ ilde{H}}$	0.15	0.14	0.84	0.06	0.26

ENTAPP visitor program, DESY Feb. 28, 2008

			ENTApP visitor program, DESY		Feb. 28, 2008
parameter	mSUGRA	MWDM	BWCA	LM3DM	HM2DM
special		$M_1(M_{GUT})$	$M_1(M_{GUT})$	$M_3(M_{GUT})$	$M_2(M_{GUT})$
value		490	-480	160	900
μ	385.1	385.9	376.6	185.3	134.8
$m_{ ilde g}$	729.7	729.9	731.7	420.2	736.4
$m_{ ilde{u}_L}$	720.8	721.2	722.0	496.9	901.8
$m_{ ilde{u}_R}$	702.7	708.9	709.9	467.0	696.3
$m_{{ ilde t}_1}$	523.4	526.5	536.3	312.2	394.3
$m_{\tilde{b}_1}$	656.8	656.0	658.9	443.2	686.4
$m_{\tilde{e}_L}$	364.5	371.5	371.4	366.1	669.3
$m_{ ilde{e}_R}$	322.3	353.3	352.2	322.6	321.3
$m_{\widetilde{W}_2}$	411.7	412.4	404.5	282.9	719.7
$m_{\widetilde{W}_1}$	220.7	220.8	220.0	152.5	136.5
$m_{\widetilde{Z}_2}$	220.6	223.2	219.2	163.6	142.3
$m_{\widetilde{Z}_1}$	119.2	194.6	201.7	105.5	94.8
m_A	520.3	525.9	518.6	398.3	670.7
m_{H^+}	529.8	535.3	528.1	408.7	679.8
m_h	110.1	110.2	109.8	106.0	111.9
$\Omega_{\widetilde{Z}_1} h^2$	1.1	0.10	0.10	0.10	0.10
$\sigma_{SI}(\widetilde{Z}_1p)$	$2.1 \times 10^{-9} \text{ pb}$	$1.5 \times 10^{-8} \text{ pb}$	$3.1 \times 10^{-11} \text{ pb}$	$7.2 \times 10^{-8} \text{ pb}$	$3.4 \times 10^{-8} \text{ pb}$
$R_{ ilde{H}}$	0.15	0.25	0.16	0.50	0.67

NUGM Models - LM3DM

- Mild evolution of $m_{H_d}^2$ due to small Yukawa coupling f_b, f_{τ}
- Lighter squarks and gluinos \rightarrow reduced effect of f_t on $m_{H_u}^2$

• smaller
$$\mu$$

• $\frac{dm_{H_d}^2}{dt} \propto f_{b,\tau}^2 X_{b,\tau}, \ \frac{dm_{H_u}^2}{dt} \propto f_t^2 X_t$

•
$$\mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan\beta}{\tan^2\beta - 1} - \frac{M_Z^2}{2} \simeq -m_{H_u}^2$$

NUGM at Colliders

- CERN LHC and Fermilab Tevatron
 - $\text{ If } \tilde{Z}_2 \longrightarrow \tilde{l}\bar{l}, \ \bar{\tilde{l}}\bar{l} \longrightarrow \tilde{Z}_1 l\bar{l} \text{ or } \tilde{Z}_2 \longrightarrow \tilde{Z}_1 l\bar{l} \text{ are open } (l = e \text{ or } \mu)$
 - \implies good prospects for measuring the \tilde{Z}_2 \tilde{Z}_1 mass gap at the CERN LHC and possibly at the Fermilab Tevatron
 - In the mSUGRA case, most of the parameter space has $m_{\tilde{Z}_2} m_{\tilde{Z}_1} > 90 \text{ GeV}$, $\implies \tilde{Z}_2 \longrightarrow \tilde{Z}_1 Z^0 \text{ or } \tilde{Z}_1 h$ "spoiler" decays dominant
 - When the mass gap is much smaller
 - $\ast\,$ spoiler decays are closed, 3-body decays are open
 - * $l\bar{l}$ mass edge always visible at LHC
- Linear e^+e^- collider(ILC)
 - $\begin{array}{l} \ m_{\tilde{Z}_2}, \ m_{\tilde{W}_1} \ \text{and} \ m_{\tilde{Z}_1} \ \text{can be inferred from} \ \tilde{W}_1^+ \tilde{W}_1^- \longrightarrow \bar{l}\nu_l \tilde{Z}_1 + q\bar{q}\tilde{Z}_1 \\ \text{(dijet events)} \end{array}$
 - $\tilde{W}_1^+ \tilde{W}_1^-$, $\tilde{Z}_1 \tilde{Z}_2$, $\tilde{Z}_2 \tilde{Z}_2$ production cross sections can be measured as a function of beam polarization: $P_L(e^-) = f_L f_R$
 - $(f_{L,R}:$ fraction of left(right) polarized electron in the beam)

Cross Section for $\tilde{W}_1^+ \tilde{W}_1^-$ and $\tilde{Z}_i \tilde{Z}_j$ Production at ILC

Compressed SUSY*: mass spectrum

- $M_3 < M_1$ or $M_2 \rightarrow$ gluino and squark masses reduced \rightarrow compressed sparticle mass spectrum
- Parameter Space at $Q = M_{GUT}$ Case A: m_0 , $m_{1/2}$, M_3 , A_0 , $\tan\beta$, $sign(\mu)$ $(M_1 = M_2 = m_{1/2}, A_0 = -1.5m_{1/2})$ Case B: m_0 , M_1 , A_0 , $\tan\beta$, $sign(\mu)$ $(1.5M_1=M_2=3M_3, m_t=175 \text{ GeV},$ $A_0=-0.75M_1, \mu > 0, \tan\beta=10, m_0=340 \text{ GeV})$
- Case B
 - cut after 1000 GeV: \tilde{t}_1 LSP \rightarrow imply upper bound on gluino and squark masses
 - LEP2 bound on chargino mass below \sim 160 GeV
 - 440 GeV < M_1 < 1000 GeV: light \tilde{t} (NLSP), $m_{\tilde{Z}_1} > m_t \Rightarrow \tilde{Z}_1 \tilde{Z}_1 \rightarrow t\bar{t}$ accessible in the early Universe
- *: named by S. P. Martin Phys.Rev.D75 (2007) 115005

Compressed SUSY: neutralino relic density

- M₁ 400 800 GeV: Ž₁Ž₁ → tt dominant
 ⇒ neutralino relic density is in close accord with WMAP value
- larger M_1 : $\tilde{t}_1 \tilde{Z}_1$ mass gap low \Rightarrow $\tilde{t}_1 \tilde{Z}_1$ co-annihilation rate large \Rightarrow below WMAP value
- $M_1 < 400$ GeV: annihilation into $t\bar{t}$ not allowed, \tilde{Z}_1 dominantly into WW and quarks and leptons $\Rightarrow h$ and Z poles

Compressed SUSY: direct and indirect DM searches

- a)Direct detection: as M_1 decreases, the rate increases due to decreasing $m_{\tilde{q}}$ and μ $t\bar{t}$ dominant region \Rightarrow detectable by SuperCDMS or 100-1000 kg noble liquid DM detectors
- b)Detection of μ: neutrinos in the solar core: as M₁ decreases, the rate slightly increase due to increasing sipn-dependent *Ž*₁-N cross section

 $M_1 < 400$ GeV: rate jumps b/c $\nu \bar{\nu}$ jumps once $t\bar{t}$ turns off

Compressed SUSY: direct and indirect DM searches (cont'd)

- c)d)e) Detection of anti-particle (e^+, \bar{p}, \bar{D}) : annihilation in the galactic halo In the region where $m_{\tilde{Z}_1} > m_t$ so that $\tilde{Z}_1 \tilde{Z}_1 \to t\bar{t}$ occurs, signals increase For the less clumpy Burkert halo profile, \bar{D} rate lowered by a factor of 10-15
- Detection of γ ray: from the galactic center
 For the Burkert halo model, scale downwards by over 4 orders

Compressed SUSY: LHC searches

- \tilde{t}_1 decay branching fraction
 - at large $M_1, m_{\tilde{t}_1} > m_b + M_W + m_{\tilde{Z}_1}$: $\tilde{t}_1 \to c\tilde{Z}_1$
 - for lower $M_1: \tilde{t}_1 \to bW\tilde{Z}_1$ opens up
 - $\text{ for } M_1 < 400 \text{ GeV}, m_{\tilde{t}_1} > m_b + m_{\tilde{W}_1}$ $: \tilde{t}_1 \to b \tilde{W}_1$
- muti-isolated-lepton + jet + E_T^{miss}
 - signals in all channels obsevable with $E_T^c = 200 \text{ GeV}$
 - jet multiplicity $n_{jet} \geq 2$, transverse sphericity $S_T > 0.2$, $E_T(j_1)$, $E_T(j_2) > E_T^c$ and $E_T^{\text{miss}} > E_T^c$
 - isolated leptons classified: $p_T > 10$ GeV, $|\eta(\ell)| < 2.5$, visible activity within a cone of $R = 0.3 < E_T(\text{cone}) = 5$ GeV.

(for all applied cuts and background levels, see Phys.Rev.D52 (1995) 2746 and Phys.Rev.D53 (1996) 6241)

Summary and Conclusion

- In most region of mSUGRA parameter space, neutralino relic abundance is too high compared to the WMAP measured result
- Allowing non-universality of gaugino or scalar masses provides the relic density in agreement with WMAP
- In non-universal models with mixed higgsino or higgsino-wino dark matter, we have enhanced rates for direct and indirect DM searches.
- In models with bino-like dark matter, if we have a mechanism to elevate neutralino annihilation rates such as into top-antitop quark pairs via top squark, we should be able to get enhanced direct and indirect detection rates due to reduced gluino, squark masses and μ parameter

$$BF(b \to s\gamma)$$

MSSM RGEs

$$\begin{aligned} \frac{dm_{H_u}^2}{dt} &= \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10} g_1^2 S + 3f_t^2 X_t \right) \\ \frac{dm_{H_d}^2}{dt} &= \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + 3f_b^2 X_b + f_\tau^2 X_\tau \right) \\ \frac{dm_{Q_3}^2}{dt} &= \frac{2}{16\pi^2} \left(-\frac{1}{15} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{10} g_1^2 S + f_t^2 X_t + f_b^2 X_b \right) \\ \frac{dm_{\tilde{t}_R}^2}{dt} &= \frac{2}{16\pi^2} \left(-\frac{16}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 - \frac{2}{5} g_1^2 S + 2f_t^2 X_t \right) \end{aligned}$$

$$\frac{dm_{\tilde{b}_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{4}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{5} g_1^2 S + 2f_b^2 X_b \right)$$

$$\frac{dm_{L_3}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + f_\tau^2 X_\tau \right)$$

$$\frac{dm_{\tilde{\tau}_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{12}{5} g_1^2 M_1^2 + \frac{3}{5} g_1^2 S + 2f_\tau^2 X_\tau \right)$$

$$S = m_{H_u}^2 - m_{H_d}^2 + Tr \left[\mathbf{m}_Q^2 - \mathbf{m}_L^2 - 2\mathbf{m}_U^2 + \mathbf{m}_D^2 + \mathbf{m}_E^2 \right]$$

where $t = \log(Q)$, $f_{t,b,\tau}$ are the t, b and τ Yukawa couplings, and

$$\begin{aligned} X_t &= m_{Q_3}^2 + m_{\tilde{t}_R}^2 + m_{H_u}^2 + A_t^2 \\ X_b &= m_{Q_3}^2 + m_{\tilde{b}_R}^2 + m_{H_d}^2 + A_b^2 \\ X_\tau &= m_{L_3}^2 + m_{\tilde{\tau}_R}^2 + m_{H_d}^2 + A_\tau^2 \end{aligned}$$