Dark Matter Detection in Supersymmetric models with Non-universal Gaugino Masses

Eun-Kyung Park

Bonn University (Germany), Florida State University (USA)

First Annual School of EU Network "UnivereNet"-The Origin of the Universe Mytilene, Island of Lesbos September 27, 2007

Eun-Kyung Park DM Detection in SUSY Models with Non-universal Gaugino Masses

Outline

- Introduction
 - $\star\,$ Review of the mSUGRA Model
 - \star Motivation of Non-universal Gaugino Mass Models
- Non-universal Gaugino Masses
 - $in \ collaboration \ with$

H. Baer (FSU), T. Krupovnickas (BNL), A. Mustafayev (Univ. of Kansas), S. Profumo (Caltech) and X. Tata (Univ.of Hawaii)

- \star Mixed Wino Dark Matter (MWDM): JHEP 0507 (2005) 065
- * Bino-Wino Co-Annihilation Scenario (BWCA):JHEP 0512 (2005) 011
- * Low M3 Dark Matter Scenario (LM3DM):JHEP 0604 (2005) 041
- Conclusions

Review of the mSUGRA Model

• Parameter Space :

 $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

• WMAP allowed Regions :

(Green colored regions)

Region 1. $\tilde{\tau}$ co-annihilation region at low m_0

Region 2. bulk region at low m_0 and $m_{1/2}$

- light sleptons (LEP2 excluded)

Region 3. A-funnel

- **H**, **A** resonance annihilation

Region 4. FP/HB region at large m_0

- mixed higgsino dark matter (MHDM): low μ
- Limitation of mSUGRA :

In most of the parameter space of the mSUGRA model, a value of neutralino relic density is beyond the WMAP bound $\Omega_{CDM}h^2 = 0.111 \pm 0.01$

3

4

Non-Universal Gaugino Mass Models

- M_1, M_2, M_3 are gauginos of U(1), SU(2) and SU(3) respectively
- In mSUGRA : minimal gauge kinetic function f_{AB} \rightarrow equal gaugino masses at GUT scale : $M_1 = M_2 = M_3 = m_{1/2}$
- Motivation for non-universal gaugino mass models :
 - * non-minimal f_{AB} in SUGRA models,
 - e.g. $f_{AB} \ni 1, 24, 75, 200$ in SU(5) SUSY GUTs
 - $\ast\,$ various string models, e.g. KKLT model
 - :H. Baer, E.-K. Park, X. Tata and T. T. Wang,

hep-ph/0703024; Phys. Lett. B641 (2006) 447; JHEP 0608 (2006) 041

- * extra-dim SUSY GUTs with gaugino mediated SUSY breaking, e.g. Dermisek-MafiSO(10) model
- Generally, the lightest neutralino mass eigenstate is determined by the content of the LSP $\tilde{z}_1 = v_1^{(1)}\psi_{h_u^0} + v_2^{(1)}\psi_{h_d^0} + v_3^{(1)}\lambda_3 + v_4^{(1)}\lambda_0$ Here, $R_{\tilde{w}} = |v_3^{(1)}|$, $R_{\tilde{B}} = |v_4^{(1)}|$ and $R_{\tilde{H}} = \sqrt{|v_1^{(1)}|^2 + |v_2^{(1)}|^2}$: W-ino, B-ino and Higgsino

Non-Universal Gaugino Mass Models

- Several ways which can increase the annihilation rate of a bino LSP without gaugino mass universality
 - * by increasing the wino content of the LSP by reducing the ratio M_2/M_1 (MWDM) :
 - $-M_1 \neq M_2 = M_3 = m_{1/2}$ or $M_2 \neq M_1 = M_3 = m_{1/2}$
 - parameter space : m_0 , $m_{1/2}$, M_1 (or M_2), A_0 , $\tan\beta$, $sign(\mu)$
 - * by allowing co-annihilation between high bino-like and wino-like states (BWCA scenario) :
 - $-M_1$ and M_2 are of opposite sign

- parameter space : m_0 , $m_{1/2}$, M_1 (or M_2), A_0 , $\tan\beta$, $sign(\mu)$

* by increasing the higgsino content of the LSP by decreasing the gluino mass (LM3DM):

$$-M_3 \neq M_1 = M_2 = m_{1/2}$$

- parameter space : $m_0, m_{1/2}, M_3, A_0, \tan\beta, sign(\mu)$

MWDM, BWCA : Neutralino Relic Density and Binoness/Winoness

- * IsaReD program (Baer, Belyaev, Balazs)
- * As $|M_1|(|M_2|)$ increases(decreases) past its mSUGRA value, $\longrightarrow \tilde{Z}_1$ becomes wino-like(MWDM) or bino-like but $m_{\tilde{Z}_1} \sim m_{\tilde{W}_1}$

(BWCA)

- \longrightarrow relic density decreases
- \longrightarrow WMAP $\Omega_{CDM}h^2$ value is reached

MWDM, BWCA : Direct and Indirect Dark Matter Detection Rates

- * DarkSUSY P. Gondolo, J. Edsjo, P. Ullio, L. Bergstom, M. Schelke and E.A. Baltz JCAP 0407 (2004) 008 [astro-ph/0406204]
- * MWDM : All rates are detectable when the WMAP point is reached
- $\ast~$ BWCA : Generally, At or Below levels expected in the mSUGRA model
- * Direct and Indirect detection experiments could serve to discriminate between these two scenarios

MWDM, BWCA : Various Sparticle Masses with Varying M_1 , M_2

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan \beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

 m_0 =300GeV, $m_{1/2}$ =300GeV, tan β =10, A_0 =0, μ >0, m_t =178GeV

* ISAJET (H. Baer, F.E. Paige, S.D. Protopopescu, and X. Tata)

- * mSUGRA : large mass gap between \tilde{Z}_2 and \tilde{Z}_1 (or \tilde{W}_1 and \tilde{Z}_1)
- * BWCA and MWDM : $m_{\tilde{Z}_2} m_{\tilde{Z}_1}$ mass gap decreases \implies most points in $m_0 vs. m_{1/2}$ plane can become WMAP allowed

MWDM, BWCA : CERN LHC Searches

• Dilepton Distributions from SUSY events: $\tilde{Z}_2 \longrightarrow \tilde{Z}_1 l \bar{l}$ open

* mSUGRA: snarp peak at $m(l^+l^-) \sim M_Z$ from $Z_2 \longrightarrow Z_1 Z^+$ decays * MWDM, BWCA: Z^0 peak from \tilde{Z}_3 , \tilde{Z}_4 , \tilde{W}_2 decays + continuum distribution $m(l^+l^-) < m_{\tilde{Z}_2} - m_{\tilde{Z}_1}$ from 3 body decays $\tilde{Z}_2 \longrightarrow \tilde{l}\bar{l}, l\bar{\bar{l}} \longrightarrow \tilde{Z}_1 l\bar{l}$ or $\tilde{Z}_2 \longrightarrow \tilde{Z}_1 l\bar{l}$

9

MWDM, BWCA : ILC Searches

- * In all cases, \tilde{W}_1 and \tilde{Z}_2 are mainly wino-like $\longrightarrow \sigma(\tilde{W}_1\tilde{W}_1)$ and $\sigma(\tilde{Z}_2\tilde{Z}_2)$ are similar to one another
- * $e^+e^- \longrightarrow \tilde{Z}_1\tilde{Z}_2$ process are quite different
 - MWDM: \tilde{Z}_1 is photino-like, \tilde{Z}_2 is zino-like $\longrightarrow e\tilde{e}_L$ coupling suppressed — BWCA: very large $\tilde{Z}_1\tilde{Z}_2$ production cross section for $P_L(e^-)$

Low M3 Dark Matter

- Mild evolution of $m_{H_d}^2$ due to small Yukawa coupling f_b, f_{τ}
- Lighter squarks and gluinos \rightarrow reduced effect of f_t on $m_{H_u}^2$ \Rightarrow smaller μ

•
$$\frac{dm_{H_d}^2}{dt} \propto f_{b,\tau}^2 X_{b,\tau}, \ \frac{dm_{H_u}^2}{dt} \propto f_t^2 X_t$$

where

$$\begin{aligned} X_t &= m_{Q_3}^2 + m_{\tilde{t}_R}^2 + m_{H_u}^2 + A_t^2 \\ X_b &= m_{Q_3}^2 + m_{\tilde{b}_R}^2 + m_{H_d}^2 + A_b^2 \\ X_\tau &= m_{L_3}^2 + m_{\tilde{\tau}_R}^2 + m_{H_d}^2 + A_\tau^2 \end{aligned}$$

•
$$\mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan\beta}{\tan^2\beta - 1} - \frac{M_Z^2}{2} \simeq -m_{H_u}^2$$

LM3DM : Neutralino Relic Density and Higgsino component of Z_1

• mSUGRA : \tilde{Z}_1 is almost pure bino, $\Omega h^2 \simeq 1.3$

• LM3DM : \tilde{Z}_1 is mixed higgsino-bino \Rightarrow enhanced $\tilde{Z}_1 \tilde{Z}_1 \rightarrow W^+ W^- \Rightarrow \Omega h^2 \simeq 0.11$

LM3DM : sparticle mass spectrum

Compare to mSUGRA :

- Less mass hierarchy on squarks and sleptons
- Lighter gluino
- Very light stop
- Small $\tilde{Z}_2 \tilde{Z}_1$ and $\tilde{W}_1 \tilde{Z}_1$ mass gaps due to low $|\mu|$

LM3DM : DD and IDD Rates for Low M3 Dark Matter

m_0 =300 GeV, $m_{1/2}$ =300 GeV, tan β =10, A_0 =0, μ >0, m_t =175 GeV

Eun-Kyung ParkDM Detection in SUSY Models with Non-universal Gaugino Masses14

LM3DM at Colliders

- (a) Tevatron: Lighter gluinos expected in LM3DM \rightarrow larger pair production
- (b) CERN LHC: Reduced squark and gluino masses \Rightarrow enhanced reach
- (c) ILC: Enhanced $\tilde{W}_1^+ \tilde{W}_1^-$ production due to smaller μ

LM3DM at Colliders

- (a) Tevatron
 - Lighter gluinos expected in LM3DM \rightarrow larger pair production
 - Heavy squarks at large m_0 and large higgsino component
- (b) CERN LHC
 - Reduced squark and gluino masses \Rightarrow enhanced reach
 - Small $\tilde{Z}_2 \tilde{Z}_1$ or $\tilde{W}_1 \tilde{Z}_1$ mass gap $\Rightarrow \tilde{Z}_2 \rightarrow l\bar{l}\tilde{Z}_1 \Rightarrow m(l^+l^-)$ mass edges over all parameter space
- (c) ILC
 - Enhanced $\tilde{W}_1^+ \tilde{W}_1^-$ production due to smaller μ
 - Possible $\tilde{t}_1 \bar{\tilde{t}_1}$ production
 - All charginos/neutralinos accesible
 - $\tilde{q} \rightarrow \tilde{g}q$ kinematically allowed \Rightarrow precise determination of \tilde{q}, \tilde{g} masses

Conclusions

- Most of mSUGRA parameter space is excluded by WMAP bound
- New perspectives open with gaugino mass non-universalities in SUGRA
- If DM in nature is indeed composed of SUSY models with non-universal gaugino masses (MWDM $(M_1 \sim M_2)$, BWCA DM $(M_1 \sim -M_2)$ or LM3DM $(|M_3| \ll M_1 \simeq M_2)$)
 - $-\tilde{Z}_2 \tilde{Z}_1$ and $\tilde{W}_1 \tilde{Z}_1$ mass gaps are reduced compared to the case with gaugino mass universality
 - Direct and Indirect detection experiments may discriminate between these scenarios
 - SUSY can be discovered at Tevatron via squarks and gluinos
 - CERN LHC should be able to measure $m_{\tilde{g}}$ and $m_{\tilde{Z}_2} m_{\tilde{Z}_1}$ mass gap from dilepton distribution from $\tilde{Z}_2 \longrightarrow l\bar{l}\tilde{Z}_1$ decay; $\tilde{Z}_2 \longrightarrow \tilde{Z}_1\gamma$ (spoiler 2-body decay closed)
 - At ILC, $W_1^+ \tilde{W}_1^-$, $\tilde{Z}_1 \tilde{Z}_2$, $\tilde{Z}_2 \tilde{Z}_2$ production cross sections as a function of beam polarization should be able to measurable.

Direct and Indirect detection of Neutralino CDM

- Using DarkSUSY 4.1
- Direct, Indirect Detection
 - Direct Detection
 - $\ast\,$ Spin independent Neutralino-Proton scattering Cross section
 - : CDMS2, XENON (sensitivity at the corresponding neutralino mass)
 - Indirect Detection
 - * detection of μ : $\Phi(\mu) = 40 \ \mu s/km^2/yr$ (IceCube)
 - * detection of $\gamma : \Phi(\gamma) = 10^{-10} \gamma s/cm^2/s$ (GLAST)
 - * detection of e^+ : $d\Phi(e^+)/dEd\Omega = 2.04 \times 10^{-9} e^+ s/cm^2/s/sr(Pamela)$
 - * detection of \bar{p} : $d\Phi(\bar{p})/dEd\Omega = 3.38 \times 10^{-9} \bar{p}s/cm^2/s/sr(Pamela)$
 - * detection of \overline{D} : $d\Phi(\overline{D})/dEd\Omega = 2.6 \times 10^{-13} \mu s/km^2/yr(GAPS)$

MSSM particle content

Superfield Bosons			Fermions		$SU_c(3) SU_L(2)$		$U_Y(1)$
Gauge							
$\hat{g}_{B\mu}$	gluon	$G_{B\mu}$	gluino	${ ilde g}_B$	8	1	0
$\hat{W}_{A\mu}$	Weak W_A	$_{A\mu} (W^{\pm}, Z)$	wino, zino	λ_A	1	3	0
Â	Hypercharg	$\mathrm{e} B_{\mu} \left(\gamma \right)$	bino	λ_0	1	1	0
Matter							
\hat{L}_{i}	sleptons $\begin{cases} \\ \\ \\ \\ \end{cases}$	$\tilde{L}_i = (\tilde{\nu}, \tilde{e})_L$	leptons $\left\{ \right.$	$L_i = (\nu, e)_L$	1	2	-1
\hat{E}_{i}		$\tilde{E}_i = \tilde{e}_R$		$E_i = e_R$	1	1	2
\hat{Q}_i		$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	ĺ	$Q_i = (u, d)_L$	3	2	1/3
\hat{U}_{i}	squarks	$ ilde{U}_i = ilde{u}_R$	quarks {	$U_i = u_R^c$	$\overline{3}$	1	-4/3
\hat{D}_i		$\tilde{D}_i = \tilde{d}_R$		$D_i = d_R^c$	$\overline{3}$	1	2/3
Higgs							
\hat{H}_d	Higgses $\begin{cases} 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	H_d	higgsinos $\left\{ \begin{array}{c} \tilde{H}_d \\ \tilde{H}_u \end{array} \right.$	$\int \tilde{H}_d$	1	$ar{2}$	-1
\hat{H}_u		H_u		$\int \tilde{H}_u$	1	2	1

Eun-Kyung ParkDM Detection in SUSY Models with Non-universal Gaugino Masses19