Relic-density-consistent SUSY models without soft term universality : consequences for collider and neutralino dark matter searches

Eun-Kyung Park Bonn University

based on JHEP05 (2008) 058
in collaboration with
H. Baer(Florida State U.), A. Mustafayev (U. of Kansas) and X. Tata (U. of Hawaii)

SUSY08, June 16-21, 2008

- Introduction
 - \star Dark Matter
 - \star Neutralino
 - \star Universal SUSY model : mSUSGRA
- Models without universality in SSB terms
 - \star Non-universal scalar mass models
 - \star Non-universal gaugino mass models
- Implications for collider searches
- Implications for direct and indirect dark matter detections
- Conclusions

Dark Matter

- Dominant composition of matter in our universe is not detected visibly but inferred from gravitational effects (Galactic Clustering, Rotation Curves, Gravitational Lensing, Cosmic Microwave Background ...)
- Dark Matter should be non-baryonic (no candidate in the SM), non-relativistic (cold), stable(or long-lived), weakly (or super-weakly) interacting matter
- From the WMAP results, the cold dark matter density of the universe is $\Omega_{CDM}h^2 = 0.111^{+0.011}_{-0.015}$: (upper bound is a tight constraint on SUSY models containing DM candidates : DM may consist of several components)

Mon.Not.R.Astron.Soc.249(1991)523

Neutralino

- In SUSY models with *R*-parity conservation \Rightarrow the Lightest Supersymmetric Particle(LSP) is stable \Rightarrow lightest neutralino \tilde{Z}_1 is the LSP in most of MSSM parameter space $\Longrightarrow \tilde{Z}_1$ is good candidate for Cold Dark Matter (CDM) $\tilde{z}_1 = v_1^{(1)} \psi_{h_u^0} + v_2^{(1)} \psi_{h_d^0} + v_3^{(1)} \lambda_3 + v_4^{(1)} \lambda_0$ Here, $R_{\tilde{w}} = |v_3^{(1)}|, R_{\tilde{B}} = |v_4^{(1)}|$ and $R_{\tilde{H}} = \sqrt{|v_1^{(1)}|^2 + |v_2^{(1)}|^2}$: *W*-ino, *B*-ino and Higgsino
- We assume,
 - MSSM is an effective theory between the weak and GUT scale
 - *R*-parity is conserved
 - Neutralino LSP
- Number density is governed by Boltzmann equation, $dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$
 - \Rightarrow requires evaluating many thousands Feynman diagrams
 - \implies high (co-)annihilation cross section implies low relic abundance

Eun-Kyung Park neutralino DM searches in relic-density-consistent models without universality 4

Some Dark Matter Candidate Particles

Universal SUSY model : mSUGRA

- Parameter space : universal Soft Susy Breaking terms at $Q = M_{GUT}$ $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- WMAP allowed Regions in m_0 - $m_{1/2}$ space
 - 1. $\tilde{\tau}$ co-annihilation region at low $m_0, m_{\tilde{\tau}_1} \sim m_{\tilde{Z}_1}$
 - 2. bulk region at low m_0 and $m_{1/2}$, light sleptons (LEP2 excluded)
 - 3. Higgs-funnel H, A resonance $(2m_{\tilde{Z}_1} \simeq m_{A,H})$ at large $\tan\beta \sim 50$ or h-resonance at low $m_{1/2}$ $(2m_{\tilde{Z}_1} \simeq m_h)$
 - 4. FP/HB region at large m_0 , low $\mu \rightarrow$ mixed higgsino dark matter (MHDM)
 - $\star~$ Region 1, 2, 3 \rightarrow Bino-like LSP

• Motivations for models with non-universality

- ★ all relic-density-consistent regions in mSUGRA are near the edges of theoretically (or LEP2 experiment) excluded regions
- \star need to examine how already drawn conclusions from the mSUGRA model are affected by relaxing the universality assumptions
- \star within *R*-parity conserved neutralino dark matter assumption, WMAP value provides a strong constraint reducing model parameter space by one unit

Models without universality in SSB terms

- Relic-density-consistent models obtained by adjusting
 - composition of neutralino (WTN: Well-Tempered Neutralino*)

*:Arkani-Hamed et al. Nucl.Phys.B741, 108, 2006

- masses of neutralino or other sparticles
- Non-universal scalar mass models
 - Generation non-universality: Normal scalar mass hierarchy (NMH)
 - Non-universal Higgs mass: one extra parameter case (NUHM1_{μ}, NUHM1_A)
 - non-universal Higgs mass: two extra parameter case (HS-Higgs Splitting)

• Non-universal gaugino mass models

- Mixed Wino Dark Matter (MWDM)
- Bino-Wino Co-Annihilation Scenario (BWCA)
- Low $|M_3|$ Dark Matter: Compressed SUSY (LM3DM)
- High $|M_2|$ Dark Matter: left-right split SUSY (HM2DM)
- Some benchmark cases with mSUGRA parameter space $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) = 300 \text{ GeV}, 300 \text{ GeV}, 0, 10, +1 \text{ and } m_t = 171.4 \text{ GeV}$

Non-universal scalar mass models

- generation non-universality: Normal scalar Mass Hierarchy (**NMH**) $m_0(1,2), m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - $m_0(1,2)$: first/second generation, $m_0(3) = m_{H_u} = m_{H_d} \equiv m_0$: remaining
 - dial $m_0(1,2)$ to low enough to bulk (co-)annihilation via light sleptons
- non-universal Higgs mass: one extra parameter case (NUHM1_{μ}, NUHM1_A) $m_0, \delta_{\phi}, m_{1/2}, A_0, \tan\beta, sign(\mu)$

$$- m_{\phi} = m_0(1 + \delta_{\phi}), \ m_{H_u}^2 = m_{H_d}^2 \equiv sign(m_{\phi})|m_{\phi}|^2$$

 $-m_{\phi} > m_0$: small μ and MHDM

$$-m_{\phi} < 0: m_A \sim 2m_{\tilde{Z}_1} \rightarrow \text{at any } \tan\beta$$

- non-universal Higgs mass: two extra parameter case (**HS**-Higgs Splitting) $m_0, m_{H_u}^2$ (equivalently μ), $m_{H_d}^2$ (equivalently m_A), $m_{1/2}, A_0, \tan\beta, sign(\mu)$ $- m_{H_{u,d}}^2 = m_0^2 \ (1 \mp \delta_H)$
 - $-\delta_H < 0$: low μ and low m_A
 - $-\delta_H > 0$: WMAP region via $\tilde{l}_L/\tilde{\nu}$ or \tilde{u}_R/\tilde{c}_R co-annihilation

Non-universal gaugino mass models

- Mixed Wino Dark Matter (**MWDM1**, **MWDM2**): m_0, M_1 (or M_2), $m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - by increasing the wino content of the LSP by reducing the ratio M_2/M_1

- $M_1 \neq M_2 = M_3 = m_{1/2}$ or $M_2 \neq M_1 = M_3 = m_{1/2}$

- Bino-Wino Co-Annihilation Scenario (BWCA1, BWCA2): same as MWDM but M_1 and M_2 are in opposite sign
 - $-\,$ by allowing co-annihilation between high bino-like and wino-like states
- Low $|M_3|$ Dark Matter: Compressed SUSY (LM3DM): $m_0, M_3, m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - by increasing the higgsino content of the LSP by decreasing the gluino mass
 - $M_3 \neq M_1 = M_2 = m_{1/2}$
- High $|M_2|$ Dark Matter: left-right split SUSY (**HM2DM**): $m_0, M_2, m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - by allowing large M_2 mass
 - $-M_2 >> M_1 = M_3 = m_{1/2}$

SUSY08, Seoul, Korea June 17, 2008

Some Benchmark Cases: non-universal scalar mass models								
parameter	mSUGRA	NMH	$\mathrm{NUHM1}_{\mu}$	$\mathrm{NUHM1}_A$	HS			
special		$m_0(1,2)$	$m_{oldsymbol{\phi}}$	m_{ϕ}	δ_H			
value		54	549	-728	-1.36			
μ	385.1	386.5	105.8	748.5	269.3			
$m_{ ilde{g}}$	729.7	722.1	731.4	733.4	728.9			
$m_{ ilde{u}_L}$	720.8	658.4	724.3	720.5	720.1			
$m_{ ilde{t}_1}$	523.4	526.5	484.1	624.5	505.8			
$m_{\tilde{b}_1}$	656.8	659.8	642.2	689.5	645.4			
$m_{ ilde{e}_L}$	364.5	216.2	364.8	365.8	373.4			
$m_{ ilde{e}_R}$	322.3	128.9	322.5	321.9	301.8			
$m_{ ilde{ au}_1}$	317.1	317.6	317.8	316.4	299.3			
$m_{\widetilde{W}_2}$	411.7	412.7	264.7	754.8	321.1			
$m_{\widetilde{W}_1}$	220.7	219.5	91.1	234.9	196.6			
$m_{\widetilde{Z}_2}$	220.6	219.4	117.4	234.5	198.1			
$m_{\widetilde{Z}_1}$	119.2	118.4	69.0	121.5	115.4			
m_A	520.3	521.9	584.5	268.5	279.0			
m_{H^+}	529.8	531.4	593.8	281.6	292.0			
m_h	110.1	110.1	109.8	110.5	109.8			
$\Omega_{\widetilde{Z}_1} h^2$	1.1	0.10	0.11	0.11	0.10			
$\sigma_{SI}(\widetilde{Z}_1p)$	$2.1 \times 10^{-9} \text{ pb}$	$2.1 \times 10^{-9} \text{ pb}$	$7.8 \times 10^{-8} \text{ pb}$	$1.2 \times 10^{-9} \text{ pb}$	$2.7 \times 10^{-8} \text{ pb}$			
$R_{ ilde{H}}$	0.15	0.14	0.84	0.06	0.26			

SUSY08, Seoul, Korea June 17, 2008

Some Benchmark Cases: non-universal gaugino mass models								
parameter	mSUGRA	MWDM	BWCA	LM3DM	HM2DM			
special		$M_1(M_{GUT})$	$M_1(M_{GUT})$	$M_3(M_{GUT})$	$M_2(M_{GUT})$			
value		490	-480	160	900			
μ	385.1	385.9	376.6	185.3	134.8			
$m_{ ilde g}$	729.7	729.9	731.7	420.2	736.4			
$m_{ ilde{u}_L}$	720.8	721.2	722.0	496.9	901.8			
$m_{ ilde{u}_R}$	702.7	708.9	709.9	467.0	696.3			
$m_{ ilde{t}_1}$	523.4	526.5	536.3	312.2	394.3			
$m_{\tilde{b}_1}$	656.8	656.0	658.9	443.2	686.4			
$m_{ ilde{e}_L}$	364.5	371.5	371.4	366.1	669.3			
$m_{ ilde{e}_R}$	322.3	353.3	352.2	322.6	321.3			
$m_{\widetilde{W}_2}$	411.7	412.4	404.5	282.9	719.7			
$m_{\widetilde{W}_1}$	220.7	220.8	220.0	152.5	136.5			
$m_{\widetilde{Z}_2}$	220.6	223.2	219.2	163.6	142.3			
$m_{\widetilde{Z}_1}$	119.2	194.6	201.7	105.5	94.8			
m_A	520.3	525.9	518.6	398.3	670.7			
m_{H^+}	529.8	535.3	528.1	408.7	679.8			
m_h	110.1	110.2	109.8	106.0	111.9			
$\Omega_{\widetilde{Z}_1} h^2$	1.1	0.10	0.10	0.10	0.10			
$\sigma_{SI}(\widetilde{Z}_1p)$	$2.1 \times 10^{-9} \text{ pb}$	$1.5 \times 10^{-8} \text{ pb}$	$3.1 \times 10^{-11} \text{ pb}$	$7.2 \times 10^{-8} \text{ pb}$	$3.4 \times 10^{-8} \text{ pb}$			
$R_{ ilde{H}}$	0.15	0.25	0.16	0.50	0.67			

Dark matter at Colliders

- CERN LHC and Fermilab Tevatron
 - $\text{ If } \tilde{Z}_2 \longrightarrow \tilde{l}\bar{l}, \ \bar{\tilde{l}}\bar{l} \longrightarrow \tilde{Z}_1 l\bar{l} \text{ or } \tilde{Z}_2 \longrightarrow \tilde{Z}_1 l\bar{l} \text{ are open } (l = e \text{ or } \mu)$
 - \implies good prospects for measuring the \tilde{Z}_2 \tilde{Z}_1 mass gap at the CERN LHC and possibly at the Fermilab Tevatron
 - In the mSUGRA case, most of the parameter space has $m_{\tilde{Z}_2} m_{\tilde{Z}_1} > 90 \text{ GeV}, \Longrightarrow \tilde{Z}_2 \longrightarrow \tilde{Z}_1 Z^0$ or $\tilde{Z}_1 h$ "spoiler" decays dominant
 - When the mass gap is much smaller
 - * spoiler decays are closed, 3-body decays are open
 - * $l\bar{l}$ mass edge always visible at LHC
- Linear e^+e^- collider(ILC)
 - $\begin{array}{l} m_{\tilde{Z}_2}, \, m_{\tilde{W}_1} \, \text{ and } m_{\tilde{Z}_1} \, \text{ can be inferred from } \tilde{W}_1^+ \tilde{W}_1^- \longrightarrow \bar{l}\nu_l \tilde{Z}_1 + q\bar{q}\tilde{Z}_1 \\ \text{ (dijet events)} \end{array}$
 - $\tilde{W}_1^+ \tilde{W}_1^-$, $\tilde{Z}_1 \tilde{Z}_2$, $\tilde{Z}_2 \tilde{Z}_2$ production cross sections can be measured as a function of beam polarization
- ISAJET program (H. Baer, F.E. Paige, S.D. Protopopescu, and X. Tata)

Implications for collider searches 1

- with $A_0 = 0, m_t = 171.4 \text{ GeV}, \tan \beta = 10$ (except for the mSUGRA model: $\tan \beta = 10, 30, 45, 50, 52 \text{ and } 55$)
 - non-universal mass dialed to yield $\Omega_{\widetilde{Z}_1} h^2 \simeq 0.11$
- $m_{\tilde{g}} vs. m_{\tilde{u}_R}$
 - dotted lines: 100 ${\rm fb}^{-1}$ reach of CERN LHC
 - dashed line: $m_{\tilde{u}_R} = m_{\tilde{g}}$
 - most of models within reach of LHC except HB/FP region of mSUGRA
- $m_{\widetilde{W}_1}$ vs. $m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ - dashed line: $m_{\widetilde{Z}_2} - m_{\widetilde{Z}_1} = M_Z$
 - below the line, 3-body decay like $\tilde{Z}_2 \rightarrow \tilde{Z}_1 l \bar{l}$ open
 - in most models, $m(l\bar{l})$ mass edge visible at LHC

Dilepton Distribution at LHC

- mSUGRA : sharp peak at $m(l^+l^-) \sim M_Z$ from $\tilde{Z}_2 \longrightarrow \tilde{Z}_1 Z^0$ decays
- NUGM : Z^0 peak from $\tilde{Z}_3, \tilde{Z}_4, \tilde{W}_2$ decays + continuum distribution $m(l^+l^-) < m_{\tilde{Z}_2} - m_{\tilde{Z}_1}$

Implications for collider searches 2

- $m_h vs. m_{\tilde{t}_1}$
 - heavier \tilde{t}_1 squarks are correlated with larger values of m_h (due to top-Yukawa radiative corrections to m_h)
 - in many models with $m_A \gg M_Z$, then $h \simeq H_{\rm SM}$: the LEP2 lower bound of 114.1 GeV applicable
- $m_{\widetilde{W}_1}$ vs. $m_{\tilde{\tau}_1}$
 - dashed lines: reach of ILC500 $(\sqrt{s} = 500 \text{ GeV})$
 - dotted lines: reach of ILC1000 $(\sqrt{s} = 1000 \text{ GeV})$

Implications for $BF(b \to s\gamma)$ and $(g-2)_{\mu}$

- $BF(b \rightarrow s\gamma)$
 - dotted line: combined experimental measurement (CLEO, Belle, BABAR)

$$BF(b \to s\gamma) = (3.55 \pm 0.26) \times 10^{-4}$$

- dashed line: SM prediction $BF(b \rightarrow s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$
- $(g-2)_{\mu}$ - positive deviation in $a_{\mu} \equiv \frac{(g-2)_{\mu}}{2}$ $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 22(10) \times 10^{-10}$ $- \Delta a_{\mu}^{SUSY} \propto \tan \beta$

 \star We assume,

- (near)degeneracy of first and second generation of SSB sfermions \rightarrow FCNC suppressed
- CP-violating phases in SSB suppressed \rightarrow CP contribution of SUSY is small

Direct and Indirect Dark Matter Detection

- Direct Detection: Spin independent Neutralino-Proton scattering Cross section (with current experimental sensitivities:Xenon-10(100, 1000), SuperCDMS, LUX)
- Indirect Detection
 - Detection of μ : Neutrinos from the Sun IceCube $\tilde{Z}_1 \tilde{Z}_1 \to W^+ W^-, q\bar{q}, \ldots \to \pi^-(\pi^+) \to \bar{\nu_{\mu}}(\nu_{\mu}) \to \mu^-(\mu^+)$
 - Detection of antiparticles : $\tilde{Z}_1 \tilde{Z}_1 \to W^+ W^-, q\bar{q}, ZZ, \ldots \to jets$ Antiprotons $(jets \ni \bar{p})$: PAMELA, Positrons $(jets \ni e^+)$: PAMELA, Antideuterons $(jets \ni \bar{D})$: GAPS
 - Detection of Gamma Rays from the galactic center GLAST
- IsaRES code (Baer-Belyaev-O'Farrill) and DarkSUSY

Implications for direct/indirect(neutrino) DM detection

- models with WTN within reach of next generation of detectors
- models adjusted masses to get WMAP value below sensitivities of detectors

Neutrino Detection

- muon fluxes from neutralino annihilation in the solar core to ν_{μ} states
- main contribution comes from Zexchange \leftarrow enhanced if neutralino has high higgsino content

Pamela : E__ ~ 20 GeV

GAPS : T_D = 0.1 - 0.25 GeV

1000

1200

 $HM2DM: M_a > 0$

 $HM2DM: M_2 < 0$

1400

800

Implications for indirect(γ -ray, antiparticle) DM detection

Positron Detection : Ad. Contr. N03 HM

Eun-Kyung Park neutralino DM searches in relic-density-consistent models without universality 18

Conclusions

- ★ WTN occurs only in FP/HB region in mSUGRA (MHDM: m_{q̃} >> m_{Z̃1}, _{W̃1}, _{g̃}). But, in relic-density-consistent models, easily get WTN with m_{q̃} ~ m_{g̃}
 ★ Higgs funnel enhancement is only for very large tanβ values in mSUGRA. But, in non-universal Higgs mass models, we have Higgs funnel for any tanβ value
- 2. In many relic-density-consistent models, $\tilde{Z}_2 \tilde{Z}_1$ mass gap $< M_Z$
 - \rightarrow 2-body decay modes kinematically closed
 - \rightarrow 3-body decay modes open \Rightarrow at least one dilepton mass edge detectable at LHC
 - \rightarrow location of dilepton mass edge is clean signature of SUSY models
- 3. $\star m_{\tilde{q}} = m_{\tilde{g}}, m_{\tilde{q},\tilde{g}} < 3100 \text{ GeV}$ for most relic-density-consistent models \rightarrow implies SUSY signals at LHC
 - $\star~m_{\tilde{\tau}}<\!\!500~{\rm GeV}$ for LM3DM
 - \rightarrow accessible at ILC with $\sqrt{s}=1$ TeV
- 4. In WTN models,

 \star enhanced annihilation rates enhance direct DM detection rates

 $\star {\rm in}$ many cases, muon neutrino signals accessible at IceCube

 \star indirect DM searches in galactic halo into gamma rays and anti-matter elevated; large uncertainties associated with unknown galactic DM density profile

MSSM RGEs

$$S = m_{H_u}^2 - m_{H_d}^2 + Tr \left[\mathbf{m}_Q^2 - \mathbf{m}_L^2 - 2\mathbf{m}_U^2 + \mathbf{m}_D^2 + \mathbf{m}_E^2 \right]$$

where $t = \log(Q)$, $f_{t,b,\tau}$ are the t, b and τ Yukawa couplings, and

$$X_{t} = m_{Q_{3}}^{2} + m_{\tilde{t}_{R}}^{2} + m_{H_{u}}^{2} + A_{t}^{2}$$
$$X_{b} = m_{Q_{3}}^{2} + m_{\tilde{b}_{R}}^{2} + m_{H_{d}}^{2} + A_{b}^{2}$$
$$X_{\tau} = m_{L_{3}}^{2} + m_{\tilde{\tau}_{R}}^{2} + m_{H_{d}}^{2} + A_{\tau}^{2}$$

Feynman Diagrams Contributing to Neutralino DM Detection

• Direct Detection

• Indirect Detection

