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Condensed Matter Theory I — WS09/10

Exercise 6

(Please return your solutions before Fr., 15.1., 12:00h)

6.1 Phonons in a metal: Kohn Anomaly (10 points)
In metals one expects that the harmonic interactions between the ions of a lattice
are not only between nearest neighbors, but are long-ranged. The physical origin is
a displacement of an ionic charge that induces an electric charge polarization in the
electron sea which is long-ranged and oscillatory in space. This oscillatory polariza-
tion acts on the other ions in the lattice. The oscillations are induced by the fact that
the electronic states are filled up to the Fermi wave number kF and the wave number
of the resulting oscillatory ion-ion potential is 2kF (Friedel oscillations).

We now consider a one-dimensional linear chain of ions in an electron sea with the
lattice constant a. The force constant between an ion on lattice site i and an ion on
lattice site j is

κij = κ0
sin 2kF a(i − j)

kF a(i − j)
.

(a) Write down the Lagrange function for the system of ions and derive the equa-
tions of motion.

(b) Make an ansatz of plane wave solutions for the ion displacements:

qj(t) = q0e
i(kx−ωt) , xj = j · a

Derive an expression for ω(k)2 and ∂ω2

∂k
and show that ω(k)2 has a cusp (diver-

gent slope) at k = 2kF . This effect is called Kohn anomaly after Walter Kohn,
who predicted it in 1959.

6.2 Optical phonons (10 points)
Consider a one-dimensional harmonic chain with two different atoms in the primitive
cell,

xj xj + 1

a

M1 M2
κ12 κ21

q1j q2j

where xj = a · j is the position of the jth primitive cell and qsj is the elongation of
the sth atom in the jth cell.
The Hamiltonian of the system is given by

H =
∑
js

1

2
Msq̇s(xj) +

1

2

∑
j

κ12(q2j − q1j)
2 + κ21(q1j − q2j−1)

2) .



For simplicity we assume κ12 = κ21 = κ.

(a) Write down the equations of motion. Use the ansatz

qsj(t) = q0
se

i(kaj−ωt) , s = 1, 2

to derive the following equation for the frequencies of the eigenmodes (phonons):

ω2 =
κ

M∗ ±

√( κ

M∗

)2

− 2
κ2

M1M2

(1 − cos ka)

M∗ = M1M2

M1+M2
is the reduced mass.

(b) Calculate ω(k)2 for k → 0 and k → ±π
a

and sketch its behavior for the full
Brillouin zone [−π

a
, π

a
]. Identify the acoustic and the optical branch.

(c) Discuss the limit M1 = M2 and show that this limit results in the acoustic
phonon dispersion with lattice constant a

2
.

6.3 Meissner effect (10 points)
The London equations of superconductivity are

∂

∂t

(
Λj⃗

)
= E⃗ ∇⃗ ×

(
Λj⃗

)
= −H⃗ Λ =

m

2nse2
.

Consider a thin superconducting slab of thickness d, infinitely ex-
tended in y and z direction, in a uniform, static magnetic field
H⃗0 = H0 êz parallel to the slab surface.

a) Use the Maxwell equations to calculate the magnetic field H⃗(x⃗)
inside the slab. Show that the field enters the slab only on a
length scale λL (London penetration depth). Draw the result.

b) Calculate also the current density inside the slab and draw the
result.

c) Calculate the average magnetization of the slab,

⟨H(x)⟩ =
1

d

d/2∫
−d/2

dxH(x),

and draw it as a function of d.

Consider now a current flow through an infinitely long cylindrical superconducting
wire of radius R (R ≫ λL).



d) Use the continuity equation to show that the current density
distribution j⃗(r) obeys an ordinary differential equation of
the form (modified Bessel differential equation)

x2 d2j

dx2
+ x

dj

dx
− x2j = 0

Hint: Laplace operator in cylindrical coordinates

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2

e) Draw the solution of d) (modified Bessel function of the first
kind) and show that the current flows only in a small layer
underneath the surface of the wire.

f) Use Biot-Savart’s law to calculate the magnetic field outside
the wire induced by the current. If the magnetic field at the
surface exceeds a critical value Hc , the superconductivity will
collapse. What is the corresponding critical current Ic?


