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Advanced Condensed Matter Theory — SS10

Exercise 1

1.1. Bosonic coherent states (14 points)

The coherent states |φ〉 are defined as the eigenstates of the bosonic annihilation operator a.

ai|φ〉 = φi|φ〉 , φi ∈ C

a) Since |φ〉 is a state of the Fock space, it can be expanded

|φ〉 =
∑

n1,n2,...

Cn1,n2,...|n1, n2, . . .〉 (1)

where |n1, n2, . . .〉 =
(a†

1
)n1

√
n1!

(a†
2
)n2

√
n2!

. . . |0〉. Show that |φ〉 can be written as

|φ〉 = exp

[

∑

i

φia
†
i

]

|0〉

Hint: By applying the annihilation operator on (1) one can obtain a recursive relation for the
coefficients Cn1,n2,.... Assume C0,0,... = 1

b) Show that the action of the creation operator on |φ〉 is given by

a
†
i |φ〉 =

∂

∂φi

|φ〉

and

〈φ|ai =
∂

∂φ̄i

〈φ|

c) Consider the following operator

Ê ≡
∫

∏

i

dφ̄idφi

π
e−

P

i
φ̄iφi|φ〉〈φ| (2)

where dφ̄idφi = d(Re φi)d(Im φi) and show that it commutes ai

d) Use Schur’s lemma1 to argue that Ê = λ · 1, λ ∈ C.
Calculate the constant λ from the vacuum expectation value of Ê.

1If the matrices D(R) are an irreducible representation of a group G (R ∈ G), and if

D(R)A = AD(R) ∀R ∈ G,

then A = constant · 1. In other words, if a matrix commutes with all the matrices of an irreducible representation,
the matrix must be a multiple of the unit matrix.



From these we can deduce that coherent states form a complete set of states in the Fock space,
i. e.

∫

∏

i

dφ̄idφi

π
e−

P

i
φ̄iφi|φ〉〈φ| = 1 (3)

e) Since we are interested in computing physical quantities, we have to calculate the traces of
operators corresponding to the physical observables.
Show that by inserting the completeness relation (3) the trace of an operator A is converted
to an integral over the coherent state eigenvalues.

tr[A] =
∑

n

〈n|A|n〉 =

∫

∏

i

dφ̄idφi

π
e−

P

i
φ̄iφi〈φ|A|φ〉

1.2. Fermionic coherent states - the Grassmann algebra (8 points)

Analogously to the bosonic case, one can define the fermionic coherent states in the same way than
for the bosonic case

ai|η〉 = ηi|η〉
But the anticommutativity of the fermionic operators [ai, a

†
j]+ = δij implies that

ηiηj = −ηjηi for i 6= j ⇒ η2
i = 0

Clearly these objects can not be ordinary numbers. They are so called Grassmann variables. The
Grassmann algebra A is a vector space over C together with an anticommutative and associative
product. In addition a conjugation operation is defined by ¯(η) = η̄ and ¯̄η = η, such that (ηa)† = a†η̄.
Functions of Grassmann variables exhibit an amazingly simple property: Since any power of η higher
than one vanishes, a function of, e.g., two Grassmann variables can be written as (Taylor series):

f(ηi, ηj) = c0 + c1ηi + c1ηj + c2ηiηj (4)

where the constants ci ∈ C.

The differentiation of Grassmann variables is defined in the following way.

∂

∂ηi

ηj = δij

and the integration over Grassmann variables is defined by

∫

dηi = 0

∫

dηiηi = 1.

Note that one cannot ignore the order of Grassmann variables:

∂

∂ηi

ηjηi = − ∂

∂ηi

ηiηj = −ηj

∫

dηiηjηi = −
∫

dηiηiηj = −ηj



a) The last lines indicate, that differentiation and integration are effectively the same for Grass-
mann variables. Show that

∂

∂ηi

f(ηi, ηj) =

∫

dηif(ηi, ηj) = c1 + c2ηj

holds. Calculate the integral
∫

dηf(η + ξ) =

∫

dηf(η) η, ξ ∈ A (5)

b) To be consistent with the anticommutation relations the Grassmann variables has to anticom-
mute with the fermion operators [ηi, aj]+ = 0. Show that

|η〉 = exp

[

∑

i

−ηia
†
i

]

|0〉.

1.3. Gaussian Integrals (8+5 points)
When evaluating functional integrals one is often faced with calculating Gaussian integrals of ei-
ther complex numbers or Grassmann variables. Therefore, some important basic relations shall
be derived in the following. We use the shorthand notations (x, y) =

∑n

i=1 x̄iyi and (x,Ay) =
∑n

i,j=1 x̄iAijyj, respectively.

a) Let A ∈ R
n×n be a positive-definite diagonal matrix. Show

∞
∫

−∞

n
∏

i=1

dxi√
π

e−(x,Ax) =
1√

det A
.

b) Let A ∈ C
n×n be a positive-definite Hermitian matrix and y ∈ C

n. Show

∫ n
∏

i=1

dz̄idzi

π
e−(z,Az)+(y,z)+(z,y) =

e(y,A−1y)

det A
.

Hint: Use an unitary transformation z′ = Uz, y′ = U †y to diagonalize A. Rewrite the integral
with respect to the real and imaginary part of z, complete the square and use the result of a).

c) For a ∈ C and η ∈ A calculate the Grassmann integral
∫

dη̄dη e−η̄aη = a.

Hint: Expand the exponential in a power series to show that only one single term contributes
to the integral. Pay attention to the order of the integration variables.

d) Now consider the case of a diagonal matrix A ∈ C
n×n. Show

∫ n
∏

i=1

dη̄idηi e−(η,Aη) = det A.

Hint: Again only one term of the power series can contribute. Which one? Reorder the
integration variables to obtain the result.



e) Finally, deduce for a general A ∈ C
n×n and ξ ∈ A

∫ n
∏

i=1

dη̄idηi e−(η,Aη)+(ξ,η)+(η,ξ) = det A · e(ξ,A−1ξ).

Hint: Complete the square and use the linear transformation from (5). For reordering
the only contributing term the Leibniz formula for determinants may be useful: det A =
∑

P∈Sn
sgn(P ) A1P (1) · ... · AnP (n), where the sum runs over all permutations of {1, .., n}.


