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Advanced Condensed Matter Theory — SS10

Exercise 10

Please return your solutions during the lecture on July 21, 2010
to be discussed on July 22, 2010

Presence exersice 1.1: Tight-Binding system: Interaction effects (10 points)

In the tight-binding system the interactions effects, due to the Coulomb repulsion between the
electrons, can significantly influence the character of the ground state and affect the nature of
quasi-particles. Comparable effects combined with interaction may drive the system towards a
correlated magnetic state or an insulating phase. To understand how this happens, we express the
Hamiltonian, describing the system, in field operators associated with the localized Wannier states,
i. e.

H =
∑

σ

∑

i,j

tijc
†
iσcjσ +

∑

σ,τ

∑

i,i′,j,j′

Uii′jj′c
†
iσc

†
i′τcj′τcjσ. (1)

The first term describes the hopping of electrons from site i to site j with the associated transition
amplitude tij. The second term is the Coulomb interaction in Wanier representation, where

Uii′jj′ =
1

2

∫

ddx

∫

ddyΨ∗
i (x)Ψ∗

i′(y)VCoulomb(x − y)Ψj′(y)Ψj(x), (2)

with Ψi as the Wanier states and VCoulomb as the Coulomb interaction between the electrons. The
Hamiltonian (1) is exact, apart from the neglect of the neighboring energy subbands.

a) In order to analyze the effects of the interaction, focused on the interaction part of the Hamil-
tonian (1), and show that the mayor contributions are

1.
∑

i Uiiiini↑ni↓,

2.
∑

i6=j Uijij (
∑

σ niσ) · (
∑

τ njτ ), and

3.
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†
iσc

†
jτciτcjσ.

Give an interpretation for first two contributions and explain why did you neglect the other
terms with respect to these.

b) Now we want to study the third contribution above in more detail. With this purpose show
next, that

∑

σ,τ

c
†
iσc

†
jτciτcjσ = −2

(

Si · Sj +
1

4

(
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·
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,

where Si = 1
2

∑

α,β c
†
iα (~σi)αβ ciβ with ~σi = (σx

i , σ
y
i , σ

z
i ).

Hint: Use the Pauli matrix identity ~σαβ · ~σγδ = 2δαδδβγ − δαβδγδ



c) Prove, that
JF

ij ≡ Uijji > 0,

and give an interpretion of the third contribution in a). Compare the present situation with
the one in atomic physics, where is manifested as Hund’s rule.

Homework 1.1: Antiferromagnetism - Spin wave Theory (15 points)

The simplest picture of an antiferromagnetic is that of two interpenetrating sub-lattices with ↑ spins
on one and ↓ on the other (see Figure (1)).

Lattice A

Lattice B

Figure 1: Bipartite lattice

This system can be described by the Heisenberg Hamiltonian

HAF = J
∑

〈i,j〉

SiSj, J > 0, (3)

where 〈·, ·〉 means that the sum is taken over nearest-neighbors.

a) Use the Holstein-Primakoff transformation

S
(ℓ) +
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i c

(ℓ)
i c
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i , S
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(ℓ)
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where cℓ
i is the annihilation operator referring to the ith atom on the sublattice ℓ ∈ {A,B},

and prove that

HAF = −JS2NZ + JSZ

(
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(A)
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j
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with Z as the number of nearest-neighbors.



b) Perform a Fourier transformation of the creation and annihilation operators c
(ℓ)
k

= N1/2
∑

j e−ikRjc
(ℓ)
i

and obtain

HAF = −JS2NZ + JZS
∑

k

[
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+
(

c
(A) †
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c
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. (5)

Give γk and use that with center symmetry γk = γ−k holds.

c) Unlike the ferromagnon case (see lecture), we cannot solve this trivially: we must diagonalize
the Hamiltonian (5). Consider the Bogoliubov transformation, which involves the bosonic
operators αk and βk

αk = ukc
(A)
k

− vkc
(B) †
k

, βk = ukc
(B)
k

− vkc
(A) †
k

(6)

and show that u2
k
− v2

k
= 1.

Which functions satisty this equation?

Use the transformation (6) to diagonalize HAF and obtain

HAF = −NZJS(S + 1) +
∑

k

ω(k)
[

α
†
k
αk + β

†
k
βk + 1

]

(7)

with the dispersion relation ω(k) = JZS
√

1 − γ2
k

.

In addition, show that long wavelength limit ka ≪ 1, if we consider a simple cubic lattice,
the dispersion vanishes as

ω(k) ∼ ka .

d) Compute the magnetization of the sublattice A M (A) =
∑

i S
(A) z
i , and show that it decreases

as

〈M (A)〉 ∼

(

T

θc

)2

for low temperatures, θc being of the order of the critical or Neel temperature.


