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Advanced Condensed Matter Theory — SS10

Exercise 3

1.0. In-Class Exercise: The Momentum Distribution

As you know from your solid state physics lecture, (free) Fermi systems possess a Fermi surface,
i.e., at T = 0 the occupation number 〈nkσ〉 jumps discontinuously at εk = µ. This discontinuity is
the origin of many physical properties of solids.

a) Show that 〈nkσ〉 can be expressed via

〈nkσ〉 =

∞∫
−∞

dω f(ω)Akσ(ω)
T→0
=

0∫
−∞

dω Akσ(ω), with f(ω) =
1

eβω + 1
. (1)

Hint: To derive Eq. (1) rewrite the expectation value 〈nkσ〉 = 〈c†kσckσ〉 in its spectral repre-
sentation and compare the result the expression for the spectral function as given in class.

b) Reminding yourself of the expression for the renormalized energy ξ̃k from the previous exercise
sheet, what can you say about the discontinuity at ξ̃k = µ?

1.1. Wick’s Theorem for T 6= 0 (7 points)

Recall from the lecture (or from the Quantum Field Theory of Condensed Matter lecture last
semester) that the perturbation expansion for the Matsubara Green’s function is very similar to
that for the zero-temperature Green’s function. In that case, the expansion could be greatly simpli-
fied by the use of Wick’s theorem, which provided a prescription for relating a time-ordered product
of interaction-picture operators to the normal-ordered product of the same operators. The ground
state expectation value of the normal products vanished identically, so that the time-ordered prod-
uct contained only fully contracted terms. Unfortunately, no such simplification occurs at finite
temperature, because the ensemble average of the normal product is zero only at zero temperature.
Nevertheless, as first proven by Matsubara1, there exists a generalized Wick’s theorem that allows a
diagrammatic expansion of the temperature Green’s functions. This exercise will guide you through
a similar proof of the generalized Wick’s theorem.

The generalized Wick’s theorem can be written down directly as follows:

〈T̂τ [ÂB̂Ĉ . . . F̂ ]〉0 = [Â•B̂•Ĉ•• · · · F̂ •••] + [Â•B̂••Ĉ• · · · F̂ •••] + . . . (2)

= sum of all possible contractions (3)

where Â, B̂, . . . are operators in the interaction picture ψ(x, τ) (or ψ†(x, τ)), and the notation for
contraction is defined as

Â•B̂• ≡ 〈T̂τ [ÂB̂]〉0 = Tr{e−βH0Tτ [ÂB̂]}
1T. Matsubara, Prog. Theoret. Phys. (Kyoto), 14:351 (1955)



We can first of all assume that the operators are already in the proper time ordering, as the operators
may be reordered on both sides of (2) without introducing any additional changes of sign. Therefore
we want to prove the identity

〈[ÂB̂Ĉ . . . F̂ ]〉0 = [Â•B̂•Ĉ•• · · · F̂ •••] + [Â•B̂••Ĉ• · · · F̂ •••] + . . . (4)

where we have assumed the time ordering of τA > τB > τC > · · · > τF . We next simplify our
notation by introducing the arbitrary operator αj defined by

ψ(x, τ) or ψ†(x, τ) =
∑
j

χj(x, τ)αj (5)

a) Rewrite the left-hand side of (4) in the new notation (5).

b) Taking your result in (a), start with an arbitrary operator under the trace, say αa (the first
operator in the product). Commute αa successively to the right until you reach the end of
the product of operators (in our notation above, that would be to the right of αf ). You will
obtain a sum of traces containing commutators. (Hint: Keep track of sign changes! )

c) We look at the final term in the sum you obtained in (b). Using the cyclic property of the
trace you can replace it by the following:

Tr{e−βH0αbαc . . . αfαa} → Tr{αae−βH0αbαc . . . αf} (6)

Using the Baker-Hausdorff-Campbell formula, prove that

eβH0αae
−βH0 = αae

λaβεa (7)

where λa = 1 if αa is a creation operator, and λa = −1 if αa is a destruction operator, while
εa is the kinetic energy corresponding to the αa

d) Using the result in (c), write down an expression for Tr{e−βH0αaαbαc . . . αf} based on the
expression you obtained in (b)

e) Define a contraction as

α•aα
•
b ≡

[αa, αb]±
1∓ eλaβεa

where the upper (lower) signs refer to bosons (fermions). Prove the generalized Wick’s theorem
(4).

1.2. Matsubara Feynman Diagrams: 1st Order Perturbation Theory (9 points)

Analogously to zero-temperature Green’s functions, pertubative calculations via Feynman diagrams
can be done in the Matsubara formalism. In this exercise and the next one we will see how the
calculations are done based on the Matsubara Feynman rules. For this purpose we consider the
Hamiltonian H of interacting electrons,

H ≡ H0 + V =
∑
k,σ

(ε(k)− µ)c†kσckσ +
∑
k,k′,q
σ,σ′

V σ,σ′

q c†k+q,σc
†
k′−q,σ′ck′σ′ckσ



We want to calculate the single-particle Matsubara Green’s function Gkσ(iω) by treating the po-
tential V as a perturbation. According to Dyson’s equation,

Gkσ(iω) = G0
kσ(iω) +G0

kσ(iω)Σkσ(iω)Gkσ(iω),

we have to calculate the self energy Σkσ(iω). Restricting to 1st order in V this corresponds to the
evaluation of the two Feynman diagrams

.

a) General case:

Use the Feynman rules to show that the first diagram (Hartree term) yields

Σ
(H)
kσ (iω) =

(
V σ,σ

q=0 + V σ,−σ
q=0

)∑
k′

f(ε(k′)− µ)

and the second one (Fock term) yields

Σ
(F)
kσ (iω) = −

∑
q

V σ,σ
q f(ε(k− q)− µ).

Hint: Recall that for a holomorphic function F (z)

1

β

∑
ω

F (iω) = −
∮
C1

dz

2πi
f(z)F (z) =

∮
C2

dz

2πi
f(z)F (z),

where C1 encloses only the poles of f(z) and C2 only those of F (z).

b) Coulomb interaction:
Consider the concrete example of a Coulomb interaction of a gas of free electrons in three
dimensions. The Fourier transform of the Coulomb potential is

V σ,σ′

q =

{
0 , q = 0

1
V

4πe20
q2

, q 6= 0
(e0: elementary electric charge).

Use the result from a) to obtain

Σkσ(iω) = −
∑
q

V σσ
k−q f(ε(q)− µ)

T→0
=

e20
2π
kF

(
2 +

k2
F − k2

kkF

ln

∣∣∣∣∣kF + k

kF − k

∣∣∣∣∣
)
.

Hint:
x∫

0

dy y ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = −x− 1

2

(
1− x2

)
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣



1.3. The Spectral Weight: A Physical Picture, Part II (9 points)
As we have seen in the previous exercise sheet, the power of the Landau Fermi Liquid Theory is
dependent on the validity of the quasiparticle picture. In order for the Fermi Liquid Theory to be
valid we would expect a large value of the lifetime. In this exercise, we will discuss a perturbative
proof of this quasiparticle concept. For that purpose, consider an electron gas with a local (Hubbard)
interaction

H ≡ H0 + V =
∑
k,σ

(ε(k)− µ) c†kσ ckσ + U
∑
k,k′,q

c†k+q↑ c
†
k′−q↓ ck′↓ ck↑.

a) The lifetime of a single-particle excitation is related to the imaginary part of Σkσ(ω) (see
exercise 2). In 1st order perturbation theory the self energy is real (exercise 3.2). Thus, we
have to consider the 2nd order diagram

.

Use the Feynman rules to show (ε̃(k) ≡ ε(k)− µ)

Σkσ(ω) = −U2
∑

k1,k2,k3

(
f(ε̃(k2))− f(ε̃(k3))

) f(ε̃(k1)) + b(ε̃(k3)− ε̃(k2))

ε̃(k1) + ε̃(k2)− ε̃(k3)− iω
×

× δ(k1 + k2 − k3 − k).

Assuming the self energy to be strongly localized in position space to show that

Σkσ(ω) ≈ −U2
∑

k1,k2,k3

(
f(ε̃(k2))− f(ε̃(k3))

) f(ε̃(k1)) + b(ε̃(k3)− ε̃(k2))

ε̃(k1) + ε̃(k2)− ε̃(k3)− iω
.

b) Assume that the density of states is bounded and slowly varying,
∑
k

= N0

∫
dε̃(k), use

b(ε̃(k3) − ε̃(k2)) ≈ −f(ε̃(k3) − ε̃(k2)), and make the analytic continuation iω → ω + i0+ to
calculate

ImΣR
kσ(ω)

T→0≈ −π
2
N3

0U
2ω2 ∼ ω2.

It can be shown that the contribution from n-th order pertubation theory yields ImΣR
kσ(ω) ∼

ωn. Why does this result mean that quasiparticles with (inverse) lifetime τ−1
k � ε∗(k) − µ

exist close to the Fermi level? What follows for the existence of a Fermi surface?



Feynman rules: (Matsubara representation)

1) Draw all connected, topologically distinct diagrams of order n.

2) Each vertex corresponds to V σσ′
q

ω, k, σ

ω ′, k ′− q, σ ′

ω, k
+ q, σ

ω
′ , k

′ , σ
′

= − 1

β
V σ,σ′

q .

3) Each line ω, k, σ corresponds to −G0
kσ(iω) =

−1

iω − ε(k) + µ
.

4) Each non-propagating line, and , gets a factor eiω0+

.

5) Each closed fermion loop gets an additional factor (−1).

6) All internal indices (momenta, spins, energies, ...) have to be summed.


