
Universität Bonn 25.4.2010
Physikalisches Institut
Prof. Dr. H. Kroha, Z. Y. Lai, M. Trujillo Mart́ınez
http://www.th.physik.uni-bonn.de/th/Groups/kroha

Advanced Condensed Matter Theory — SS10

Exercise 6

1.0. The Rudermann-Kittel-Kasuya-Yosida (RKKY) Interaction

This exercise is concerned with the derivation of the form of the RKKY interaction. The RKKY
is a particular kind of magnetic interaction between magnetic ions which are separated by a finite
distance. In this case there can be of course no direct interaction between the ions. They can,
however, indirectly interact through mediation by the quasi-free, mobile electrons of the conduction
band, in which the two magnetic ions are assumed to be embedded. The Hamiltonian for such an
interaction has the form

H = Hs +Hsf =
∑
k,σ

ε(k)c†kσckσ − J
2∑
i=1

si · Si (1)

where here Hs is the Hamiltonian for the conduction electrons, while si and Si are the spin operators
for the electrons and magnetic ions respectively.

a) Show the general relation

Hsf = −J
2∑
i=1

si · Si = −J
2∑
i=1
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b) Expressing the electron spin operators in terms of the creation and annihilation operators in
the usual way, i.e., szi = ~

2
(c†i↑ci↑ − c†i↓ci↓), s

+
i = ~c†i↑ci↓, and s−i = ~c†i↓ci↑ and performing a

Fourier transformation of the creation and annihilation operators into wavevector space, show
that (2) can be written in the form

Hsf = − J~
2N

∑
i

∑
k,q

e−iq·Ri

{
Szi

(
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†
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)
+ S+

i c
†
k+q↓ck↑ + S−i c

†
k+q↑ck↓

}
(3)

We want to perform a perturbation calculation upon the interaction Hamiltonian Hsf between the
localized f -electrons and the conduction band electrons. In other words, we want to calculate the
energy correction due to Hsf up to 2nd order. These quantities are defined in the usual manner:
For the 1st order correction we have

E
(1)
0 = 〈 0; f | Hsf | 0; f 〉 (4)

and the 2nd order expression is

E
(2)
0 =

∑
(A,f ′) 6=(0,f)

| 〈 0; f | Hsf | A; f ′ 〉 |2

E
(0)
0 − E

(0)
A
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For this purpose we need to carefully define the unperturbed unpolarized ground state | 0; f 〉
and excited state | A; f ′ 〉 of the total system. We first see that the space and spin parts can
be separated: | 0; f 〉 ≡ | 0 〉 | f 〉 and analogously for the excited state. The ground state of the
unperturbed electronic system (corresponding to the filled Fermi sphere) is defined in the usual way

as | 0 〉 = 1
N !

∑
P(−1)pP | k(1)

1 m
(1)
s1 ,k

(2)
2 m

(2)
s2 , . . .k

(N)
N m

(N)
sN 〉 and analogously for the excited state,

where the kets | k(i)
i m

(i)
si 〉 ≡ | k

(i)
i 〉 | m

(i)
si 〉 are single electron states where i is a electron label.

c) Based on the information given above, argue that (4) vanishes.

d) We note that the expression for the 2nd order energy correction involves matrix elements
which connect ground and excited states 〈 0; f | Hsf | A; f ′ 〉 . Due to the orthonormality of
the single particle states the matrix element splits into expressions of the form 〈 0 | O | A 〉 ⇒
〈 k′m′s | O | k′′m′′s 〉 . Argue, in the same way as in question (c), that the following matrix
elements take the forms

〈 k′m′s | c
†
q+k↑ck↑ − c

†
q+k↓ck↓ | k

′′m′′s 〉 → Θ(kF − |k + q|)Θ(|k| − kF )δk,k′′δk+q,k′
2

~
〈 m′s | sz | m′′s 〉

〈 k′m′s | c
†
q+k↑ck↓ | k

′′m′′s 〉 → Θ(kF − |k + q|)Θ(|k| − kF )δk,k′′δk+q,k′
2

~
〈 m′s | s+ | m′′s 〉

〈 k′m′s | c
†
q+k↓ck↑ | k

′′m′′s 〉 → Θ(kF − |k + q|)Θ(|k| − kF )δk,k′′δk+q,k′
2

~
〈 m′s | s− | m′′s 〉

e) Putting together the different pieces into (5) and using the completeness relations
∑

f ′ | f ′ 〉 〈 f ′ | =
1 and

∑
m′′s
| m′′s 〉 〈 m′′s | = 1 show that we have the intermediate result

E
(2)
0 =

J2

4N2

∑
k,q

∑
i,j

∑
m′s

Θk,k+qe
−iq·(Ri−Rj)

ε(k + q)− ε(k)
[ 〈 f | 〈 m′s | { Szi (4Szj (sz)

2+2S+
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f) Using the fact that si = ~
2
σi, i = x, y, z and the relations s+ = ~

2
(σx + iσy), s− = ~

2
(σx − iσy)

show that

E
(2)
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J2~2

2N2

∑
k,q

∑
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Θk,k+qe
−iq·(Ri−Rj)

〈 f | Si · Sj | f 〉
ε(k + q)− ε(k)

(6)

from which one can read off the coupling constant JRKKYij in the effective Hamiltonian

HRKKY
f = −

∑
i,j

JRKKYij Si · Sj (7)

g) Evaluate JRKKYij . Do this in the effective mass approximation ε(k) = ~2k2

2m∗
and by first

converting the two summations into integrations, i.e., 1
N2

∑
k,q →

V 2

N2(2π)6

∫
d3k

∫
d3q to obtain

the intermediate result

JRKKYij =
m∗J2V 2

N24π4R2
ij

∫ kF

0

∫ ∞
kF

dk k
sin(k′Rij) sin(kRij)

k2 − k′2
(8)

h) Set the lower integral limit in the second integral to zero in (8). Use (or first prove!)∫ ∞
0

dk k
sin(kRij)

k2 − k′2
=
π

2
cos(k′Rij) (9)

to find the final expression for JRKKYij .


