Prof. Dr. H. Kroha, Z. Y. Lai, M. Trujillo Martínez
http://www.th.physik.uni-bonn.de/th/Groups/kroha

## Advanced Condensed Matter Theory - SS10

## Exercise 7

### 7.1 Tunnel current

(25 points)
In the lecture, it was mentioned that one can measure the local density of states (DOS) of a substrate by performing a scanning tunneling microscope experiment. In this exercise, we will derive an elementary relation between the DOS and the measured $d I / d V$ signal. For that purpose, consider the model Hamiltonian (see Fig. 1)

$$
\begin{align*}
\mathcal{H} \equiv & \sum_{\mathbf{k}}\left(\epsilon_{\mathrm{T}}(\mathbf{k})-\mu_{\mathrm{T}}\right) c_{\mathbf{k}, \mathrm{T}}^{\dagger} c_{\mathbf{k}, \mathrm{T}}+\sum_{\mathbf{k}}\left(\epsilon_{\mathrm{S}}(\mathbf{k})-\mu_{\mathrm{S}}\right) c_{\mathbf{k}, \mathrm{S}}^{\dagger} c_{\mathbf{k}, \mathrm{S}} \\
& +\sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left(t_{\mathbf{k k}^{\prime}} c_{\mathbf{k}, \mathrm{T}}^{\dagger} c_{\mathbf{k}^{\prime}, \mathrm{S}}+t_{\mathbf{k k}^{\prime}}^{*} c_{\mathbf{k}^{\prime}, \mathrm{S}}^{\dagger} c_{\mathbf{k}, \mathrm{T}}\right)  \tag{1}\\
\equiv & \mathcal{H}_{T}+\mathcal{H}_{S}+\mathcal{H}_{h y b} \\
\equiv & \mathcal{H}_{0}+\mathcal{H}_{h y b}
\end{align*}
$$

The indices $S$ and $T$ denote the substrate and the tip, respectively.
a) The current flowing between tip and substrate is given by

$$
I(t)=e_{0} \frac{d N_{\mathrm{S}}}{d t}(t)=-e_{0} \frac{d N_{\mathrm{T}}}{d t}(t), \quad N_{\mathrm{S}(\mathrm{~T})}(t)=\sum_{\mathbf{k}} c_{\mathbf{k}, \mathrm{S}(\mathrm{~T})}^{\dagger}(t) c_{\mathbf{k}, \mathrm{S}(\mathrm{~T})}(t)
$$

where here the operators are represented in the Heisenberg representation. In the Heisenberg representation the equation of motion is given by the time-independent Hamiltonian as

$$
\frac{d N_{\mathrm{S}}}{d t}(t)=-i\left[N_{\mathrm{S}(\mathrm{~T})}(t), \mathcal{H}\right]
$$

Use the Heisenberg equation of motion to derive

$$
\langle I(t)\rangle=e_{0} \mathrm{i} \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left(t_{\mathbf{k}^{\prime} \mathbf{k}}\left\langle c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger}(t) c_{\mathbf{k}, \mathrm{S}}(t)\right\rangle-t_{\mathbf{k}^{\prime} \mathbf{k}}^{*}\left\langle c_{\mathbf{k}, \mathrm{S}}^{\dagger}(t) c_{\mathbf{k}^{\prime}, \mathrm{T}}(t)\right\rangle\right) .
$$

b) Show that in leading order of the tunneling amplitude the current expectation value finally reads

$$
\begin{aligned}
\langle I(t)\rangle= & e_{0} \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left|t_{\mathbf{k}^{\prime} \mathbf{k}}\right|^{2} \int_{-\infty}^{\infty} d t^{\prime}\left(\left\langle c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger}(t) c_{\mathbf{k}, \mathrm{S}}(t) c_{\mathbf{k}, \mathrm{S}}^{\dagger}\left(t^{\prime}\right) c_{\mathbf{k}^{\prime}, \mathrm{T}}\left(t^{\prime}\right)\right\rangle_{0}\right. \\
& \left.\quad-\left\langle c_{\mathbf{k}, \mathrm{S}}^{\dagger}(t) c_{\mathbf{k}^{\prime}, \mathrm{T}}(t) c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger}\left(t^{\prime}\right) c_{\mathbf{k}, \mathrm{S}}\left(t^{\prime}\right)\right\rangle_{0}\right) \\
\equiv & I_{\mathrm{S} \rightarrow \mathrm{~T}}-I_{\mathrm{T} \rightarrow \mathrm{~S}} .
\end{aligned}
$$

Hint: Remind yourselves of the section on linear response theory in Theoretical Condensed Matter Theory last semester. There you learned that, we can derive the response function of a system to an external perturbation $\mathcal{H}_{h y b}$ via the formula (using our problem Hamiltonian as an example)

$$
\begin{equation*}
\langle I(t)\rangle=-i e_{0} \int_{-\infty}^{\infty} d t^{\prime}\left\langle\left[\dot{N}_{S}(t), \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]\right\rangle_{0} \tag{2}
\end{equation*}
$$

Here we stress that the operators $\dot{N}_{S}(t)$ and $\mathcal{H}_{h y b}\left(t^{\prime}\right)$ are now in the interaction representation, i.e., $\dot{N}_{S}(t) \equiv e^{i \mathcal{H}_{0} t} N_{S} e^{-i \mathcal{H}_{0} t}$, and the same for $\mathcal{H}_{h y b}\left(t^{\prime}\right)$. Also, the notation $\langle\cdots\rangle_{0}$ denotes taking the average value over the ground state. Now the reason for the fact that we have now our operators in the interaction representaion is due to the derivation of the linear response formula itself, in the following way: lets assume we want to derive the current response operator $J(\mathbf{r}, t)$ from the current operator $j(\mathbf{r}, t)$ (the explicit form of the respective operators does not concern us here; this is only an illustrative example)

$$
\begin{aligned}
J(\mathbf{r}, t) & =\left\langle\psi^{\prime}\right| e^{i \mathcal{H} t} j(\mathbf{r}) e^{-i \mathcal{H} t}\left|\psi^{\prime}\right\rangle \\
& =\left\langle\psi^{\prime}\right| e^{i\left(\mathcal{H}_{0}+\mathcal{H}_{h y b}\right) t} j(\mathbf{r}) e^{-i\left(\mathcal{H}_{0}+\mathcal{H}_{h y b}\right) t}\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

where $\left|\psi^{\prime}\right\rangle$ is the wave function at $t=0$ for an interacting system (with the full $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{\text {hyb }}$ involved, where $\mathcal{H}_{h y b}$ is again a perturbation part). Now we also know that

$$
\begin{aligned}
e^{-i\left(\mathcal{H}_{0}+\mathcal{H}_{h y b}\right) t} & =e^{-i t \mathcal{H}_{0}} U(t) \\
\Rightarrow U(t) & =e^{-i t \mathcal{H}_{0}} e^{-i\left(\mathcal{H}_{0}+\mathcal{H}_{\text {hyb }}\right) t} \\
\Rightarrow J(\mathbf{r}, t) & =\left\langle\psi^{\prime}\right| U^{\dagger}(t) e^{i \mathcal{H}_{0} t} j(\mathbf{r}) e^{-i \mathcal{H}_{0} t} U(t)\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

where $U(t)=T \exp \left[-i \int_{0}^{t} d t^{\prime} \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]$ is the well-known time development operator, T the time-ordering operator. Now since $\left|\psi^{\prime}\right\rangle=T \exp \left[-i \int_{-\infty}^{0} d t^{\prime} \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]|\psi\rangle$, with $|\psi\rangle$ denoting the ground state we see also that $U(t)\left|\psi^{\prime}\right\rangle=T \exp \left[-i \int_{-\infty}^{t} d t^{\prime} \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]|\psi\rangle \equiv S(t,-\infty)|\psi\rangle$. Now we can rewrite

$$
\begin{aligned}
J(\mathbf{r}, t) & =\left\langle\psi^{\prime}\right| U^{\dagger}(t) e^{i \mathcal{H}_{0} t} j(\mathbf{r}) e^{-i \mathcal{H}_{0} t} U(t)\left|\psi^{\prime}\right\rangle \\
& =\langle\psi| S^{\dagger}(t,-\infty) j(\mathbf{r}, t) S(t,-\infty)\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

where $j(\mathbf{r}, t)$ is now in the interaction picture. Expanding $S(t,-\infty)$ up to 1 st order in $\mathcal{H}_{\text {hyb }}$ and resubstituting it we see that

$$
\begin{aligned}
J(\mathbf{r}, t) & =\langle\psi| S^{\dagger}(t,-\infty) j(\mathbf{r}, t) S(t,-\infty)|\psi\rangle \\
& =\langle\psi|\left[1+i \int_{-\infty}^{t} d t^{\prime} \mathcal{H}_{h y b}\left(t^{\prime}\right)\right] j(\mathbf{r}, t)\left[1-i \int_{-\infty}^{t} d t^{\prime} \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]|\psi\rangle \\
& =\langle\psi|\left[j(\mathbf{r}, t)-i \int_{-\infty}^{t} d t^{\prime}\left[j(\mathbf{r}, t) \mathcal{H}_{h y b}\left(t^{\prime}\right)-\mathcal{H}_{h y b}\left(t^{\prime}\right) j(\mathbf{r}, t)\right]\right]|\psi\rangle
\end{aligned}
$$

and assuming $\langle\psi| j(\mathbf{r}, t)|\psi\rangle=0$ you have the expression

$$
J(\mathbf{r}, t)=-i \int_{-\infty}^{t} d t^{\prime}\langle\psi|\left[j(\mathbf{r}, t), \mathcal{H}_{h y b}\left(t^{\prime}\right)\right]|\psi\rangle
$$

Therefore one starts with all the operators in the Heisenberg picture, but since we want to do the calculation with $\mathcal{H}_{h y b}$ as a perturbation, the perturbation part goes into the time evolution operator and the rest of the operators in the commutator is defined in the interaction picture. This final expression looks very much like (2), of course.
c) Denote the joint many body states of sample and tip by $\left|n, n^{\prime}\right\rangle \equiv|n\rangle_{\mathrm{T}}\left|n^{\prime}\right\rangle_{\mathrm{S}}$ to derive the spectral representation

$$
\begin{gathered}
\left.I_{\mathrm{S} \rightarrow \mathrm{~T}}=\frac{2 \pi e_{0}}{Z_{\mathrm{G}}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} \sum_{n, n^{\prime}} \sum_{m, m^{\prime}}\left|t_{\mathbf{k}^{\prime} \mathbf{k}}\right|^{2}\left|\left\langle n, n^{\prime}\right| c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger} c_{\mathbf{k}, \mathrm{S}}\right| m, m^{\prime}\right\rangle\left.\right|^{2} \mathrm{e}^{-\beta\left(E_{n}-\mu_{\mathrm{T}}\right)} \mathrm{e}^{-\beta\left(E_{n^{\prime}}-\mu_{\mathrm{S}}\right)} \\
\times \delta\left(E_{n}+E_{n^{\prime}}-E_{m}-E_{m^{\prime}}\right)
\end{gathered}
$$

and the corresponding one for $I_{\mathrm{T} \rightarrow \mathrm{S}}$.
Show that $I_{\mathrm{S} \rightarrow \mathrm{T}}$ can be expressed as

$$
I_{\mathrm{S} \rightarrow \mathrm{~T}}=2 \pi e_{0} \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left|t_{\mathbf{k}^{\prime} \mathbf{k}}\right|^{2} \int d \omega A_{\mathbf{k}^{\prime}, \mathrm{T}}(\omega) A_{\mathbf{k}, \mathrm{S}}(\omega) f_{\mathrm{T}}(\omega)\left(1-f_{\mathrm{S}}(\omega)\right)
$$

where

$$
f_{\mathrm{S}(\mathrm{~T})}(\omega)=\frac{1}{\mathrm{e}^{\beta\left(\omega-\mu_{\mathrm{S}(\mathrm{~T})}\right)}} .
$$

Derive also the corresponding expression for $I_{\mathrm{T} \rightarrow \mathrm{S}}$.
Hint:

- Use the definition of the spectral function from the lecture, i.e.,

$$
\left.A_{\mathbf{k}, S}(\omega)=\frac{1}{Z_{G}^{S}} \sum_{n^{\prime}, m^{\prime}}\left|\left\langle n^{\prime}\right| c_{\mathbf{k}, S}^{\dagger}\right| m^{\prime}\right\rangle\left.\right|^{2}\left(e^{-\beta \tilde{E}_{n^{\prime}}}+e^{-\beta \tilde{E}_{m^{\prime}}}\right) \delta\left(\omega+E_{n^{\prime}}-E_{m^{\prime}}\right)
$$

and similarly for $A_{\mathbf{k}^{\prime}, T}(\omega)$, where $\tilde{E}_{n} \equiv E_{n}-\mu_{T}, \tilde{E}_{n^{\prime}} \equiv E_{n^{\prime}}-\mu_{S}$ inserting this into the expression for $I_{S \rightarrow T}$ given on the sheet, try to recover expression for $I_{\mathrm{S} \rightarrow \mathrm{T}}$ given above.
$-Z_{G}=Z_{G}^{S} \cdot Z_{G}^{T}$
$\left.\left.\left.-\left|\left\langle n, n^{\prime}\right| c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger} c_{\mathbf{k}, \mathrm{S}}\right| m, m^{\prime}\right\rangle\left.\right|^{2} \equiv\left|\langle n| c_{\mathbf{k}^{\prime}, \mathrm{T}}^{\dagger}\right| m\right\rangle\left.\right|^{2}\left|\left\langle n^{\prime}\right| c_{\mathbf{k}, \mathrm{S}}\right| m^{\prime}\right\rangle\left.\right|^{2}$

- The average value $\langle\cdots\rangle_{0} \equiv \frac{1}{Z_{G}} \sum_{n, n^{\prime}}\left\langle n, n^{\prime}\right| e^{-\beta \mathcal{H}_{0}} \cdots\left|n, n^{\prime}\right\rangle$
d) For simplicity, we assume $\left|t_{\mathbf{k}^{\prime} \mathbf{k}}\right|^{2} \approx|t|^{2}=$ const. Furthermore, the local density of states of the tip is typically a smooth and slowly varying function and we can approximate

$$
N_{\mathrm{T}}(\omega)=\sum_{\mathbf{k}} A_{\mathbf{k}, \mathrm{T}}(\omega) \approx N_{0} .
$$

The difference of the chemical potentials arises from the applied voltage $V$ : $\mu_{\mathrm{T}}-\mu_{\mathrm{S}}=e_{0} V$. Show that then the $d I / d V$-measurement is related to the local DOS of the substrate via

$$
\frac{d\langle I\rangle}{d V}=e_{0}^{2} \Gamma N_{\mathrm{S}}\left(\mu_{\mathrm{S}}+e_{0} V\right), \quad \Gamma=2 \pi N_{0}|t|^{2}
$$



Figure 1: STM setup

