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Advanced Condensed Matter Theory — SS10

Exercise 9

9.1. Explicit Solution for the Coupling Factor Jq in the Anisotropic s-d Model

We have seen from the lecture that the two relevant coupling constants in the anisotropic Kondo
model, denoted J‖ and J⊥, obeys the following scaling equations

dJ⊥
d lnD

= −2ρ0J‖J⊥ (1)

dJ‖
d lnD

= −2ρ0J
2
⊥ (2)

where D is the bandwidth of the conduction electrons, as defined in the lecture, and ρ0 is a flat
band (constant) density of states.

a) Derive the additional condition
J2
‖ − J2

⊥ = C (3)

where the constant C can take on values of C > 0 or C < 0.

b) Substituting (3) into (2), you obtain a decoupled differential equation for J‖ only, which can
be solved via separation of variables. An example of this was done for the isotropic s-d model
already in the lecture. Solve the resulting differential equation.
Hint: Differentiate between the cases C > 0 and C < 0. For the case of C < 0 write
C = − | C | .

9.2. Magnon-Magnon Interaction and Self-Energy

In the previous exercise sheet we have worked with the spin-wave approximation of the Holstein-
Primakoff transformation for the description of spin waves in antiferromagnetism. In this approx-
imation we only have our creation and annihilation operators in bilinear form, i.e., it does not
include interactions between magnons. In this exercise we would like to see how magnon-magnon
interaction is taken into account by going beyond the spin-wave approximation. We start with the
simplest Heisenberg Hamiltonian which includes magnon-magnon interactions:

H =
∑
q

2S {J(0)− J(q)} â†qâq −
1

N

∑
q1q2q3q4

â†q1
â†q2

âq3 âq4δq1+q2,q3+q4 {J(q1 − q3)− J(q3)} (4)

where the creation and annihilation operators [âq, â
†
q] = δq,q′ are bosonic operators, and J(q) =

J
∑

r exp(iq · r) = rJγq. In addition J(0) = rJ . Here the summation over r is over nearest
neighbours, J is the strength of the nearest neighbour ferromagnetic interaction, r is the number
of nearest neighbours, and γq = 1

r

∑
r exp(iq · r), where γq = γ−q.



a) We begin with the usual definition of a Green’s function

Gq,q′(t) = −iθ(t) 〈 [âq(t), â†q′ ]〉

with the resulting equation of motion in frequency space

~ωGq,q′(ω) = ~ 〈 [âq, â
†
q′ ]〉 + 〈〈 [âq,H]; â†q′ 〉〉 (5)

where the notation 〈〈B̂; B̂†〉〉 ≡ G(ω). Show that the higher-order Green’s function

〈〈 [âq,H]; â†q′ 〉〉 = 2rJS(1− γq)Gq,q′(ω)−

− rJ

N

∑
q1q2q3

δq+q1,q2+q3 {γq−q2 − 2γq2 + γq1−q2} 〈〈 â†q1
âq2 âq3 ; â

†
q′ 〉〉 (6)

b) Neglect the 2nd term in (6). Show that you obtain the Green’s function for the 1-magnon
(linear) approximation

Gq,q′(ω) = ~δqq′ {~ω − 2rJS(1− γq)}−1

c) Define the following vectors:

q2 =
1

2
K + Q and q3 =

1

2
K−Q

and call the higher order Green’s function 〈〈 â†q1
âq2 âq3 ; â

†
q 〉〉 ≡ AK(Q), where we suppress for

the moment dependence on q and q1. Using the identity for translationally invariant systems∑
Q

γQ−q′AK(Q) = γq′

∑
Q

γQAK(Q)

show that the second term in (6)

− rJ

N

∑
q1q2q3

δq+q1,q2+q3 {γq−q2 − 2γq2 + γq1−q2}AK(Q) =

=
2rJ

N

∑
K,q1

δq+q1,K

{
γK/2 − γq−K/2

}∑
Q

γQAK(Q) (7)

and we see that the important quantity to be determined is
∑

Q γQAK(Q)

d) We would like to derive an equation of motion for AK(Q). According to the template in (5)
one would expect an equation of the following form:

~ωAK(Q) = ~ 〈 [â†q1
âq2 âq3 , â

†
q]〉 + 〈〈 [â†q1

âq2 âq3 ,H]; â†q 〉〉 (8)

where the Hamiltonian H is given in (4). The evaluation of the 2nd term in (8) can be
simplified via several approximations.

i) Show that the following higher order Green’s function, which appears in the second term
in (8)

〈〈 [â†q1
âq2 âq3 , â

†
p1
â†p2

âp3 âp4 ]; â
†
q 〉〉 =

= 〈〈â†q1
[âq2 âq3 , â

†
p1
â†p2

]âp3 âp4 ; â
†
q 〉〉 + 〈〈â†p2

â†p3
[â†q1

, âp3 âp4 ]âq2 âq3 ; â
†
q 〉〉 (9)

We neglect the second term in (9) and approximate the first term as

〈〈â†q1
[âq2 âq3 , â

†
p1
â†p2

]âp3 âp4 ; â
†
q 〉〉 ≈ 〈 [âq2 âq3 , â

†
p1
â†p2

]〉 〈〈â†q1
âp3 âp4 ; â

†
q 〉〉



ii) We want to approximate the expression 〈 [âq2 âq3 , â
†
p1
â†p2

]〉 . Using the fact that 〈 â†qâq′〉 =
δqq′ 〈 â†qâq〉 = δqq′nq show that, at temperature T = 0

〈 [âq2 âq3 , â
†
p1
â†p2

]〉 = δp1q2δp2q3 + δp1q3δp2q2

Hint: At T = 0 the occupation number of the magnons vanishes.

e) Putting everything together show that the equation of motion for AK(Q) reads as

{~ω − E(q1,q2,q3)}AK(Q) = ~ 〈 [â†q1
âq2 âq3 , â

†
q]〉 +

2rJ

N

{
γK/2 − γQ

}∑
Q′

γQ′AK(Q′) (10)

where E(q1,q2,q3) ≡ ~(ωq2 + ωq3 − ωq1) and ~ωq = 2rJS(1− γq).

f) By first evaluating the 1st term on the right-hand side of (10), keeping in mind that 〈 â†qâq′〉 =
δqq′ 〈 â†qâq〉 , we can solve (10) for

∑
Q γQAK(Q). We can do this by multiplying through (10)

by γQ and summing over Q. Show that the solution is

{1−Wq1(K, ω)}
∑
Q

γQAK(Q) = 2nq1γq−K/2δq+q1,K/(ω − ωq) (11)

where

Wq1(K, ω) ≡ 2rJ

N

∑
Q

γQ(γK/2 − γQ)

{
~ω − E(q1,

1

2
K + Q,

1

2
K−Q)

}−1

g) The final step involves the recognization of the fact that the factor in (11) {ω − ωq}−1 ≡
Gqq(ω). Going back to our original equation of motion for Gqq(ω) (Eq. (5)) and by substi-
tuting our result (11) in the right hand side of (7) show that we can write (5) in the form

{~ω − ~ωq − Σq(ω)}Gqq(ω) = ~ (12)

where the self energy resulting from magnon-magnon interactions is given by

Σq(ω) =
4rJ

N

∑
p,K

npδp+q,Kγq−K/2

{
γK/2 − γq−K/2

}
{1−Wp(K, ω)}−1 (13)


