# Advanced Theoretical Condensed Matter Physics - SS11 

## Exercise 2

(Please return your solutions before Tu. 3.5.2011)

### 2.1. In-Class Exercise: Wick's Theorem in the Matsubara Formalism

Recall from the lecture that in order to perform the perturbation expansion in terms of Feynman diagrams, a technical fact relating an arbritary order Green's function to products of single particle Green's functions, Wick's theorem, is required. A proof of Wick's theorem in the zero-temperature formalism is relatively straightforward, due to the fact that at zero temperature, the expectation values of normal-ordered product of creation / annihilation operators vanishes, and therefore the time-ordered product of those operators are the same as the the sum. But in the case of finitetemperature, since groud-state expectation values do no vanish, Wick's theorem needs to be proven in a slightly different way. This exercise will guide you through the steps required to prove Wick's theorem in the Matsubara formalism.

We start with the usual definition of the n-particle Green's function in the Matsubara formalism:

$$
\begin{align*}
\mathcal{G}_{0}^{(n)}\left(\nu_{1} \tau_{1}, \ldots, \nu_{n} \tau_{n} ; \nu_{1}^{\prime} \tau_{1}^{\prime}, \ldots,\right. & \left.\nu_{n}^{\prime} \tau_{n}^{\prime}\right) \\
& =(-1)^{n}\left\langle T_{\tau}\left[\hat{c}_{\nu_{1}}\left(\tau_{1}\right) \cdots \hat{\nu}_{\nu_{n}}\left(\tau_{n}\right) \hat{c}_{\nu_{n}^{\prime}}^{\dagger}\left(\tau_{1}^{\prime}\right) \cdots \hat{\nu}_{\nu_{1}^{\prime}}^{\dagger}\left(\tau_{1}^{\prime}\right)\right]\right\rangle_{0} \tag{1}
\end{align*}
$$

Here the indices $\nu_{i}$ denote arbritary quantum numbers ( $\vec{r}, \sigma$ etc) assigned to particle $i, \tau_{i}$ are the imaginary time variables, and the " 0 " subscript denotes average with respect to a non-interacting Hamiltonian $H_{0}$. Time evolution of the creation and annihilation operators are also defined with respect to $H_{0}$, i.e.,

$$
\begin{equation*}
\hat{c}(\tau)=e^{\tau H_{0}} c e^{-\tau H_{0}} \tag{2}
\end{equation*}
$$

We first simplify our expression in (1) by introducing the operator symbol

$$
d_{i}\left(\sigma_{i}\right)=\left\{\begin{aligned}
\hat{c}_{\nu_{i}}\left(\tau_{i}\right), & i \in[1, n] \\
\hat{c}_{\nu_{2 n+1-i}}^{\dagger}\left(\tau_{2 n+1-i}^{\prime}\right), & i \in[n+1,2 n]
\end{aligned}\right.
$$

and furthermore we define the permutations of the $2 n$ operators as

$$
P\left(d_{1}\left(\sigma_{1}\right) \cdots d_{2 n}\left(\sigma_{2 n}\right)\right)=d_{P_{1}}\left(\sigma_{P_{1}}\right) \cdots d_{P_{2 n}}\left(\sigma_{P_{2 n}}\right)
$$

a) Using the definition of the Green's function given in (1), argue that it can be rewritten in the form

$$
\begin{align*}
& \mathcal{G}_{0}^{(n)}\left(i_{1}, \ldots, i_{2 n}\right)=(-1)^{n} \sum_{P \in S_{2 n}}( \pm 1)^{P} \theta\left(\sigma_{P_{1}}-\sigma_{P_{2}}\right) \cdots \theta\left(\sigma_{P_{n-1}}-\sigma_{P_{n}}\right) \times \\
& \times\left\langle d_{P_{1}}\left(\sigma_{P_{1}}\right) \cdots d_{P_{2 n}}\left(\sigma_{P_{2 n}}\right)\right\rangle_{0} \tag{3}
\end{align*}
$$

The easiest way to show Wick's theorem for finite temperatures is through the equation of motion of the $n$-particle Green's function. Since in (3) we have a product of $\theta$-functions and $H_{0}$-averaged product of the $d_{P_{i}}\left(\sigma_{i}\right)$ operators, we expect that a derivative with respect to a time variable, $\tau_{1}$ for example, will produce 2 kinds of contributions: one coming from the derivative of the $\theta$-function, and another coming from the derivative of the expectation value itself.
b) Differentiate (1) with respect to $\tau_{1}$. What do you obtain for the equation of motion? Show that differentiation with respect to an arbitrary index $i$ yields the following expression

$$
\begin{equation*}
\mathcal{G}_{0 i}^{-1} \mathcal{G}_{0}^{(n)}=-\partial_{\tau_{i}}^{\theta} \mathcal{G}_{0}^{(n)} \tag{4}
\end{equation*}
$$

where the quantities $\mathcal{G}_{0 i}^{-1}$ and $h_{0}$ are defined in the following way

$$
\begin{array}{r}
\mathcal{G}_{0 i}^{-1}=-\partial_{\tau}-h_{0}, \quad H_{0}=\sum_{\nu \nu^{\prime}} h_{0, \nu \nu^{\prime}} c_{\nu}^{\dagger} c_{\nu^{\prime}} \\
-\partial_{\tau} \mathcal{G}_{0}\left(\nu \tau, \nu^{\prime} \tau^{\prime}\right)-\sum_{\nu^{\prime \prime}} h_{0, \nu \nu^{\prime \prime}} \mathcal{G}_{0}\left(\nu^{\prime \prime} \tau, \nu^{\prime} \tau^{\prime}\right)=\delta\left(\tau-\tau^{\prime}\right) \delta_{\nu \nu^{\prime}} \tag{6}
\end{array}
$$

and $\partial_{\tau_{i}}^{\theta}$ only operates on the $\theta$-functions.
Take now the case where $\tau_{i}$ and $\tau_{j}^{\prime}$ are next to each other. There are 2 such terms in (1), corresponding to $\tau_{i}$ being either smaller or larger than $\tau_{j}^{\prime}$. This corresponds to different arguments of the $\theta$-functions.
c) Calculate the right-hand side of (4) for the times $\tau_{i}$ and $\tau_{j}^{\prime}$ as described above.
d) With the help of the equal-time (anti-)commutation relations

$$
\begin{aligned}
& {\left[\hat{c}_{\nu_{i}}\left(\tau_{i}\right), \hat{c}_{\nu_{j}^{\prime}}^{\dagger}\left(\tau_{i}\right)\right]_{B, F}=\delta_{\nu_{i}, \nu_{j}^{\prime}}} \\
& {\left[\hat{c}_{\nu_{i}}\left(\tau_{i}\right), \hat{c}_{\nu_{j}}\left(\tau_{i}\right)\right]_{B, F}=0}
\end{aligned}
$$

show that (4) can be rewritten as

$$
\begin{equation*}
\mathcal{G}_{0 i}^{-1} \mathcal{G}_{0}^{(n)}=\sum_{j=1}^{n} \delta_{\nu_{i}, \nu_{j}^{\prime}} \delta\left(\tau_{i}-\tau_{j}^{\prime}\right)(-1)^{x} \mathcal{G}_{0}^{n-1}(\underbrace{\nu_{1} \tau_{1}, \ldots, \nu_{n} \tau_{n}}_{\text {without } i} ; \underbrace{\nu_{1}^{\prime} \tau_{1}^{\prime}, \ldots, \nu_{n}^{\prime} \tau_{n}^{\prime}}_{\text {without } j}) \tag{7}
\end{equation*}
$$

e) Determine $x$ by looking at the various definitions of Green's functions and minus signs picked up when commutating fermions. Integrating (7) according to (5) and obtain Wick's theorem:

$$
\begin{align*}
& \mathcal{G}_{0}^{(n)}\left(\nu_{1} \tau_{1}, \ldots, \nu_{n} \tau_{n} ; \nu_{1}^{\prime} \tau_{1}^{\prime}, \ldots, \nu_{n}^{\prime} \tau_{n}^{\prime}\right) \\
& \quad=\sum_{j=1}^{n}( \pm 1)^{i+j} \mathcal{G}_{0}\left(\nu_{i} \tau_{i}, \ldots, \nu_{j}^{\prime} \tau_{j}^{\prime}\right) \mathcal{G}_{0}^{n-1}(\underbrace{\nu_{1} \tau_{1}, \ldots, \nu_{n} \tau_{n}}_{\text {withouti }} ; \underbrace{\nu_{1}^{\prime} \tau_{1}^{\prime}, \ldots, \nu_{n}^{\prime} \tau_{n}^{\prime}}_{\text {without } j}) \tag{8}
\end{align*}
$$

### 2.2 Homework Exercise: Feynman Diagrams in 1 ${ }^{\text {st }}$ Order Perturbation Theory

Generally, Green's function cannot be calculated exactly, but one has to use appropriate approximations. In this exercise, we want to use perturbation theory and to practice the calculation of Feynman diagrams. For that purpose, consider the Hamiltonian $\mathcal{H}$ of interacting electrons,

$$
\mathcal{H} \equiv \mathcal{H}_{0}+V=\sum_{\mathbf{k}, \sigma}(\epsilon(\mathbf{k})-\mu) c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+\sum_{\substack{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q} \\ \sigma, \sigma^{\prime}}} V_{\mathbf{q}}^{\sigma, \sigma^{\prime}} c_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} c_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma^{\prime}}^{\dagger} c_{\mathbf{k}^{\prime} \sigma^{\prime}} c_{\mathbf{k} \sigma}
$$

We want to calculate the single-particle Matsubara Green's function $G_{\mathbf{k} \sigma}(\mathrm{i} \omega)$ by treating the potential $V$ as a perturbation. According to Dyson's equation,

$$
G_{\mathbf{k} \sigma}(\mathrm{i} \omega)=G_{\mathbf{k} \sigma}^{0}(\mathrm{i} \omega)+G_{\mathbf{k} \sigma}^{0}(\mathrm{i} \omega) \Sigma_{\mathbf{k} \sigma}(\mathrm{i} \omega) G_{\mathbf{k} \sigma}(\mathrm{i} \omega),
$$

we have to calculate the self energy $\Sigma_{\mathbf{k} \sigma}(\mathrm{i} \omega)$. Restricting to $1^{\text {st }}$ order in $V$ this corresponds to the evaluation of the two Feynman diagrams

a) General case:

Use the Feynman rules to show that the first diagram (Hartree term) yields

$$
\Sigma_{k \sigma}^{(\mathrm{H})}(\mathrm{i} \omega)=\left(V_{\mathbf{q}=0}^{\sigma, \sigma}+V_{\mathbf{q}=0}^{\sigma,-\sigma}\right) \sum_{\mathbf{k}^{\prime}} f\left(\epsilon\left(\mathbf{k}^{\prime}\right)-\mu\right)
$$

and the second one (Fock term) yields

$$
\Sigma_{k \sigma}^{(\mathrm{F})}(\mathrm{i} \omega)=-\sum_{\mathbf{q}} V_{\mathbf{q}}^{\sigma, \sigma} f(\epsilon(\mathbf{k}-\mathbf{q})-\mu)
$$

Hint: Recall that for a holomorphic function $F(z)$

$$
\frac{1}{\beta} \sum_{\omega} F(\mathrm{i} \omega)=-\oint_{C_{1}} \frac{d z}{2 \pi \mathrm{i}} f(z) F(z)=\oint_{C_{2}} \frac{d z}{2 \pi \mathrm{i}} f(z) F(z),
$$

where $C_{1}$ encloses only the poles of $f(z)$ and $C_{2}$ only those of $F(z)$.
b) Coulomb interaction:

Consider the concrete example of a Coulomb interaction of a gas of free electrons in three dimensions. The Fourier transform of the Coulomb potential is

$$
V_{\mathbf{q}}^{\sigma, \sigma^{\prime}}=\left\{\begin{array}{rrr}
0 & \mathbf{q}=0 \\
\frac{1}{V} \frac{4 \pi e_{0}^{2}}{q^{2}} & , \quad \mathbf{q} \neq 0
\end{array} \quad\left(e_{0}: \text { elementary electric charge }\right)\right.
$$

Use the result from a) to obtain

$$
\Sigma_{k \sigma}(\mathrm{i} \omega)=-\sum_{\mathbf{q}} V_{\mathbf{k}-\mathbf{q}}^{\sigma \sigma} f(\epsilon(\mathbf{q})-\mu) \stackrel{T \rightarrow 0}{=} \frac{e_{0}^{2}}{2 \pi} k_{\mathrm{F}}\left(2+\frac{k_{\mathrm{F}}^{2}-k^{2}}{k k_{\mathrm{F}}} \ln \left|\frac{k_{\mathrm{F}}+k}{k_{\mathrm{F}}-k}\right|\right)
$$

Hint:

$$
\int_{0}^{x} d y y \ln \left|\frac{y-1}{y+1}\right|=-x-\frac{1}{2}\left(1-x^{2}\right) \ln \left|\frac{x-1}{x+1}\right|
$$

Feynman rules: (Matsubara representation)

1) Draw all connected, topologically distinct diagrams of order $n$.
2) Each vertex corresponds to



3) Each line $\xrightarrow{\omega, k, \sigma}$ corresponds to $-G_{\mathbf{k} \sigma}^{0}(\mathrm{i} \omega)=\frac{-1}{\mathrm{i} \omega-\epsilon(\mathbf{k})+\mu}$.
4) Each non-propagating line, $\bigcirc$ and ${ }^{\circ}$, gets a factor $e^{\mathrm{i} \omega 0^{+}}$.
5) Each closed fermion loop gets an additional factor ( -1 ).
6) All internal indices (momenta, spins, energies, ...) have to be summed over.
7) For the Coulomb interaction, we have energy conservation at the vertex, i.e., $\delta_{\omega^{\prime}+\omega^{\prime \prime}}=\delta_{\omega^{\prime \prime \prime}+\omega^{\prime \prime \prime \prime}}$
