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Exercise 4

(Please return your solutions before Tue 17.5.2011)

3.1. Screening in an electron gas I: Lindhard function

We will consider the response of a weakly interacting electron gas to a static impurity
with electric charge q0. The static electric potential induced by the impurity is

φel(r, t) =
q0

r
. (1)

and couples to the electron density of the gas via the relation

Vt = −e0

∫

ddr φel(r, t) n(r, t). (2)

The interaction of electron gas and impurity will change the electron distribution in
the vicinity of the impurity. We know that within linear response theory, the change
is given by

∆n(r, t) = −e0

∞
∫

−∞

dt′
∫

ddr′φel(r
′, t′) χ(r − r′, t − t′)

= −e0

∫

ddq

(2π)d
e−iqrφ̂el(q) χ̂(q, ω = 0),

where χ(r− r′, t− t′) = −iΘ(t− t′)〈[n(r, t), n(r′, t′)]−〉0 is called the response function

of the system to the electron density change caused by the interaction, χ̂(q, ω) is its
Fourier transform and φ̂el(q) the Fourier transform of the Coulomb potential. (The
system is translationally invariant and therefore χ depends only on r − r′.)

a) To calculate the response function we have to evaluate the Fourier transform of
the time ordered function

χM(τ − τ ′, r − r′) = −
∑

σ,σ′

〈Tτ ψ†
σ(r, τ)ψσ(r, τ)ψ†

σ′(r
′, τ ′)ψσ′(r

′, τ ′)〉,

which is in absence of interaction is given by the polarization bubble

Π(q) =

ω′, k + q, σ

ω′, k, σ



Carry out the Matsubara sum required and show that it yields

Π(q) = 2
∑

k

f(ǫ(k + q) − µ) − f(ǫ(k) − µ)

ǫ(k + q) − ǫ(k)
(3)

T→0
= 2

∫

ddk

(2π)d

Θ(µ − ǫ(k + q/2)) − Θ(µ − ǫ(k − q/2))

ǫ(k + q/2) − ǫ(k − q/2)
. (4)

b) The main contribution arises from small momentum transfer. Therefore, assume
ǫ(k) = k2/2m and neglect all terms of order O(q2) in the denominator of the
integrand. Show

Π(q) ≈
2m

π q

∫

dd−1k⊥

(2π)d−1

k
−

∫

k
+

dk‖

k‖

with: k± =
√

k2
F − k2

⊥ ±
q

2
. (5)

Hint: Use a coordinate system such that k = (k⊥, k‖), where k‖ denotes the
component of k pointing in the direction of q.

c) Finally, derive the Lindhard function in d = 1, 3 dimensions

Π(q) =
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, d = 3

, (6)

which is plotted below.
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Figure 1: The Lindhard function in d = 1, 3 dimensions.



3.2. Screening in an electron gas II: Thomas-Fermi approximation and

Friedel oscillations

We will continue with our calculation of the response of an electron gas to a static
impurity with charge q0 = e0 in three dimensions. In 3.1 we derived the expression
for the induced change of the charge density

∆n(r, t) = −e0

∫

d3q

(2π)3
e−iqr φ̂el(q) Π(q). (7)

a) Show that according to Eq. (7), with the bare Coulomb interaction φ̂el(q), the
induced charge

∆Q = −e0

∫

d3r ∆n(r, t)

is infinite!

b) To obtain a physically meaningful result we must take into account the screening
of the Coulomb interaction by the electron gas. For that purpose, we will re-
sum the leading contributions (random phase approximation) to get an effective
interaction

corresponding to

φ̂eff(q) = φ̂el(q) + φ̂el(q)e0Π(q)φ̂el(q) + φ̂el(q)e0Π(q)φ̂el(q)e0Π(q)φ̂el(q) + . . .

Replace in Eq. (7) the bare Coulomb interaction by the effective one and show
that it yields

∆n(r, t) = −

∫

d3q

(2π)3
e−iqr

(

1

κ(q)
− 1

)

, (8)

with

κ(q) = 1 +
q2
TF

q2
g(q/kF) ,

qTF =

√

4e2
0
m

π
kF
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.

c) Show that the induced charge now becomes

∆Q = −e0,

which shows that the additional charge at the origin becomes completely screened
at large distances.



d) To get a rough estimate on the asymptotic behaviour of ∆n(r, t) for r → ∞,
we set g(q/kF) ≈ g(0) (Thomas-Fermi approximation). Show that this yields

∆n(r, t)
r→∞
≈ −

q2
TF

4π

e−q
TF

r

r
.

e) A careful evaluation of Eq. (8) shows that the correct result is

∆n(r, t)
r→∞
≈ −

4e0

π

q2
TF/k2

F

(8 + q2
TF/k2

F)2

cos(2kFr)

r3
.

The long-range oscillations with wavelength π/kF are called Friedel oscillations

and arise from the presence of a sharp Fermi surface. To obtain them one has
to take into account the singularity of g(x), g′(x) ≈ −δ(x − 2). Using the
asymptotics of g(x) we approximate

∆n(r, t) = −

∫

d3q

(2π)3
e−iqr

(

1

κ(q)
− 1

)

≃ q2
TF

∫

d3q

(2π)3
e−iqr g(q/kF)

q2 + q2
TF

.

Use integration by parts and approximate

F (x) =

x
∫

0

dy
y

y2 + r2q2
TF

sin(y) ⇒ F (2kFr) ≃ −
cos(2kFr)

r

to obtain the Friedel oscillations of the density modulation.


