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Advanced Theoretical Condensed Matter Physics — SS11

Exercise 6

(Please return your solutions by Tues. 21.06.2011)

We have heard about the phenomenological basis of Anderson’s Poor Man’s Scaling approach
to the Kondo problem in the lecture. In essence, the purpose of this approach is to integrate
out degrees of freedom far away from the Fermi level, thereby reducing the bandwidth D, and
hence reducing the logarithmic divergence proportional to kT/D which appears when one treats
the Kondo model perturbatively. As the bandwidth is reduced, one would expect also a change
in the values of the coupling constants J± and Jz of the Kondo Hamiltonian.

In the first part on this sheet we will recreate Anderson’s arguments that led to his scaling
equations for the different coupling constants J± and Jz in an anisotropic Kondo model. In
the second part of the sheet we will solve the scaling equations and obtain the flow diagram
for the model we are using. All these concepts (scaling equations, flow diagrams, renormalized
coupling constants) are important in the theory of the renormalization group, which is in itself
one of the most important concepts in condensed matter physics.

6.1. Anderson’s Scaling Argument: Poor Man’s Scaling Approach to the Kondo Model

We start from the Kondo Hamiltonian, written explicitly as

H =
∑

kσ

ǫkσ ĉ
†
kσ ĉkσ +

∑

kk′

[

J+Ŝ+ĉ†k↓ĉk′↑ + J−Ŝ−ĉ†k↑ĉk′↓ + JzŜ
z(ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓)

]

(1)

where J± and Jz are simply coupling constants, while Ŝ±,z are the transversal spin rising /
lowering and longitudinal operators, respectively.

We start with the T-matrix :

T (ε) = V + V
1

ε −H0

V + . . .

= V + V
1

ε −H0

T (ε)

where V is the “perturbation”, and 1

ǫ−H0

is essentially the free propagator. These quantities will
become clearer once a diagram has been drawn, see below. But first we state the question we
want to ask, namely: can we invent a different perturbation Ṽ and a different “unperturbed”
Hamiltonian H̃0 such that we have again the same T-matrix

T (ǫ) = Ṽ + Ṽ
1

ε − H̃0

T̃ (ε)

but with a reduced bandwidth, −D̃ < ε < D̃, see the schematic in Fig. 1 of this procedure.
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Figure 1: Integration of the higher-energy states

a) Define a projector P onto states with one or more excitations with energies D > |ε| >
D̃ ≡ D − δD. We would like to calculate the projected T-matrix

T̃ (ε) = (1 − P )T (ε)(1 − P )

Using the fact that (1 − P ) + P = 1, (1 − P )2 = (1 − P ), [H0, P ] = 0 and discarding a
term which is small if V is small, show that

V = (1 − P )V(1 − P ) + (1 − P )VP
1

ε −H0

V(1 − P ) (2)

H0 = (1 − P )H0(1 − P ) (3)

The second term in (2) is the change of the “perturbation” due to the reduction in the band-
width. It is possible to look at the behaviour of this term under the action of the projector P
and deduce the rescaling of the various parameters. We start by writing P = P1 + P2, where
P1 projects onto states which have at least one hole with energy −D < ε < −D + δD, and P2

projects onto states which have at least one electron with energy D − δD < ε < D. Thus we
will look at terms which look like, for example

δV1,2 = (1 − P )VP1,2

1

ε −H0

P1,2V(1 − P ) (4)

where the index i on δVi would signify whether the process involves the projection only onto
electron states, or involve hole states. Diagrams for the former process is shown in Fig. 2 while
the latter in Fig. 3. In both diagrams the curved lines denote the incoming and outgoing electron
(or hole) lines, respectively, while the horizontal line denote the spin state of the localized spin.
Arrows denote spin states.

~p, ↑

~q, ↓

~p′, ↑

Ŝ+ Ŝ−
↓ ↑ ↓

Figure 2: Diagram without spin flip with an electronic intermediate state
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Figure 3: Diagram with spin flip with a hole intermediate state

b) You might have noticed that in Fig. 2 there is no spin flipping between the incoming and
outgoing electrons, while in Fig. 3 there is flipping involved. Taking conservation of spin
flips into account, draw all possible distinct diagrams that involve both electron and hole
states, and also spin flipping / no flipping.
Hint: It is generally a good idea to categorize the diagrams in the following manner:

Spin Flip Particle Hole
No Spin Flip Particle Hole

From the diagrams sketched in (b), we can now see what happens when a particular term is
evaluated. First note that a term such as

P2V(1 − P ) =
1

N

∑

qp

(

J+Ŝ+ĉ†q↓ĉp↑ + J−Ŝ−ĉ†q↑ĉp↓ + JzŜ
z(ĉ†q↑ĉp↑ − ĉq↓ĉp↓)

)

(5)

signifies a summation over wavevectors p such that |εp| < D − δD and the sum over q is such
that D − δD < εq < D. This means that the expression in (4) would be the multiplication of
the propagator by (5) from the right, and the complex conjugate of (5) from the left. Usually
this would entail the multiplication of all possible terms, but since we have drawn the relevant
diagrams in (b), we need to only work with the diagrams and not look at the actual terms in
(4). For example, the diagram in Fig. 2 would correspond to the expression

1

N2

∑

q′p′

∑

qp

(

J−J+Ŝ−ĉ†p′↑ĉq′↓

1

ε −H0

ĉ†q↓ĉp↑Ŝ
+

)

(6)

c) Intermezzo: Show that the following holds: given the noninteracting part of our Kondo
Hamiltonian H0, for any operator Â such that [H0, Â] = bÂ, where b is a c-number, then

1

ε −H0

Â = Â
1

ε − b −H0

(7)

d) Using (7), we can now work with expressions of the type (6). In (6), commute ĉ†q↓ĉp↑Ŝ
+

across the propagator (note that the spin rising / lowering operators do not commute
with one another!). We now go to extensive approximations (these approximations were
also performed in the original Anderson paper !).

– First of all, since we have restricted the summation over q in (6) to the energy
interval D − δD < εq < D, we can approximate εq ≈ D.



– Also due to this reason, we can write ĉq′↓ĉ
†
q↓ ≈ δqq′ . The summation over q′ can now

be done, and we are only left with a summation over q.

– Since at this point, the summand is q-independent, the summation over q simply
gives us Nν(0)δD.

– Finally, we can set H0 to zero in the denominator.

You should obtain finally, for the term (6)

ν(0)δD

N
J−J+Ŝ−Ŝ+

∑

pp′

ĉ†p′↑ĉp↑
1

ε − D + εp

(8)

Explain the reasoning behind the approximations done above, using Fig. 1 and the fact
that we set our ground state energy to 0; otherwise let your tutor explain it in the exercise
class and only use these approximations for the calculations here :-)

d) Do the same for all the diagrams in (b) using the same reasoning as in (c). The idea is
now to sum up all the diagrams and simplify them. This can be done using the identities

Ŝ+Ŝ− =
1

2
+ Ŝz

Ŝ−Ŝ+ =
1

2
− Ŝz

ŜzŜ+ =
1

2
Ŝ+

Ŝ+Ŝz = −
1

2
Ŝ+

which are valid for S = 1

2
. Show that, at the end you get several terms, which are:

Hint: We note that we would like to ultimately compare the renormalized Hamiltonian
to the original, which has the form (1). This means that it would be a good idea to get
the arrangements of the creation / annihilation operators as close to the form in the
Hamiltonian as possible.

– a change in the ground state energy

δEG = −
ν(0)δD

N

(

1

2
J2

z + J+J−

)

∑

p

1

D − ε + εp

which can be absorbed in a redefinition of ε and is therefore unimportant.

– A term of order O(δD/D2) which is small and can be discarded.

– Finally, the renormalized coupling constants Jz and J± have the form

Jz → Jz + ν(0)δDJ+J−

(

1

D − ε − εp

+
1

D − ε + εp′

)

(9)

J± → J± + ν(0)δDJzJ±

(

1

D − ε − εp

+
1

D − ε + εp′

)

(10)



e) Discarding the energy dependence in the denominators in (9) and (10) to derive the
scaling equations

∂Jz

∂D
= −2ν(0)

J±J∓

D
(11)

∂J±

∂D
= −2ν(0)

J±Jz

D
(12)

Why are there extra minus signs?

Hint : For reference the following expressions, after inserting the spin operator identities,
are what one expects.

δV↑↑ =
ν(0)δD

N
J+J−Ŝz

∑

pp′

ĉ†p′↑ĉp↑

(

∑

p

1

D − ε − εp

+
1

D − ε + εp′

)

−

−
ν(0)δD

N

(

1

4
J2

z +
1

2
J+J−

)

∑

pp′

ĉ†p′↑ĉp↑
εp + εp′

(D − ε − εp)((D − ε + εp′)
−

−
ν(0)δD

N

(

1

4
J2

z +
1

2
J+J− + J−J+Ŝz

)

∑

p′

1

D − ε + εp′

δV↑↓ =
ν(0)δD

N
JzJ−Ŝ−

∑

pp′

ĉ†p′↑ĉp↓

(

1

D − ε − εp

+
1

D − ε + εp′

)

where δV↑↑ is the total expression for no spin flipping, and δV↑↓ is the total contribution
from diagrams which flips the spin from up to down.

6.2. Solution of the Scaling Equations and the Flow Diagram

In this exercise we will solve the scaling equations in (9) and (10) and sketch the flow diagram
associated with them.

a) Set the magnitudes of J+ and J− the same such that you can write J±J∓ = J2
±. Solve (9)

and (10) to obtain the additional condition

J2

z − J2

± = C (13)

where C is a constant value which can take on values C ≶ 0.

b) To simplify the solution of the differential equation, rewrite (9) and (10) as differentials
over the logarithms instead, i.e., ∂Jz

∂lnD
and ∂J±

∂lnD
. Decouple the rewritten scaling equations

using (13) to obtain a differential equation for Jz (or J±, depending on how you decoupled
your equations). Refer to the lecture for an example of this procedure, in which the same
procedure was done for the isotropic Kondo Hamiltonian.

c) Solve the differential equation in b), and sketch the scaling equation.


