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Advanced Theoretical Condensed Matter Physics — SS11

Exercise 7

(Please return your solutions by Tues. 21.06.2011)

In the lecture you have heard about the Keldysh formalism and how it can be used to calculate
nonequilibrium quantites. You have also heard how diagrammatics can be similarly done using
the Keldysh formalism. In this exercise sheet we will first derive a “Keldysh” version of Wick’s
theorem, which is essential for the development of any form of diagrammatics. In the second
part of the sheet we will write down the expression for the Fock self-energy term in the Keldysh
formalism.

7.1. Wick’s Theorem for Contour-Ordered Perturbation Theory

As you already know very well by now, Wick’s theorem deals with the statement that a
quadratically weighted trace (we work in the Matsubara finite-temperature formalism) of a
(time-ordered) product of creation and annihilation operators can be decomposed into the sum
of products of all possible pairwise contractions. In the case of the Keldysh formalism, the
statement can be written down as follows:

〈TC (c(τn)c(τn−1) . . . c(τ2)c(τ1))〉 =
∑

P

∏

q,q′

〈Tct (cq(τ)cq′(τ
′))〉 (1)

The operators c(τ) where the contour-ordering symbol, TC is defined in the following way:

TC (c(τ)c(τ ′)) =

{

c(τ)c(τ ′) for τ >C τ ′

c(τ ′)c(τ) for τ ′ >C τ

The operators c(τ) are either creation or annihilation operators, the sum over P denote a sum
over all possible ways of picking pairs of operators, and on the right-hand side the q-indices
label states with good quantum numbers. We note that on the left hand side of (1) we have
dropped the q labels as they are not that important for the purpose of stating Wick’s theorem,
but one should always keep in mind their existence. In addition, the thermal average 〈. . . 〉 is
defined in the usual way as

〈. . . 〉 ≡ tr(ρT . . . )

where ρT is the statistical operator for the equilibrium state of the non-interacting bosons or
fermions

ρT =
e−H

(0)
b/f

/kT

Tre−H
(0)
b/f

/kT
(2)

and the noninteracting Hamiltonian is given in the usual form

H
(0)
b/f =

∑

q

hq =
∑

q

ǫq ĉ
†
q ĉq



where b/f denotes bosons / fermions. In our notation we differentiate between the actual
creation and annihilation operators with a hat, ĉ†q and ĉq respectively, while the notation cq can
mean either one, which will be specified in the problem.

We note that for a noninteracting Hamiltonian the different qs are good quantum numbers, and
therefore we can write (2) as the decomposition

ρT =
∏

q

ρT
q , ρT

q = z−1
q e−hq/kT

where zq = 1

1−e−
ǫq
kT

is the partition function for a single mode q.

a) Show that given the information above that

〈[cq, A]s〉 =
(

1 + seλcǫq/kT
)

〈cqA〉 (3)

where s = ∓ signifies bose and fermi statistics, respectively, A is an arbritary operator,
and λc has the meaning

λc =

{

+1 for cq = ĉ†q
−1 for cq = ĉq

Hint: It will be easier to show this for bose and fermi statistics separately, and then
combine the results. Also it is easier to first compute the quantity [cq, ρT ]

b) Now we can use the fact that (3) holds to rewrite the product of operators on the left-hand
side of (1). First show that

〈

2N
∏

n=1

c(τn)

〉

=
(

1 + seλc(τ2N )ǫq /kT
)−1

〈[

c(τ2N),
2N−1
∏

n=1

c(τn))

]

s

〉

(4)

Note that we have a a total of 2N operators since the expectation value is only nonvan-
ishing for an even number of operators.

c) Work out the commutator in the angled brackets in (4). Show that you obtain

〈[

c(τ2N),
2N−1
∏

n=1

c(τn))

]

s

〉

= (−s)

〈

c(τ2N−1)c(τ2N)
2N−2
∏

n=1

c(τn)

〉

+

+ [c(τ2N), c(τ2N−1)]s

〈

2N−2
∏

n=1

c(τn)

〉

+

+s

〈(

2N−1
∏

n=1

c(τn)

)

c(τ2N)

〉

d) Continue commuting the operator c(τ2N) in the first term repeatedly, and show that you
finally obtain

[

c(τ2N),
2N−1
∏

n=1

c(τn)

]

s

=
2N−1
∑

n=1

(−s)n−1[c(τ2N), c(τn)]s

2N−1
∏

m=1,m6=n

c(τm) (5)



e) Finally, putting steps a) - d) together, show that by repeating the steps N number of
times, one obtains Wick’s theorem as stated in (1).

6.2. Diagrammatics in the Kelydsh Formalism.

In this exercise we would like to see, at least in principle, how the extra complexity of the
Keldysh formalism due to the matrix structure of the Green functions can be handled in a
perturbative calculation. Specifically, we will write down the expression for the Fock diagram,
shown in Fig. 1 below. For purposes of consistency we use the Larkin-Ovchinnikov representa-
tion of the tridiagonal matrices1 and the following dictionary:

Diagram Component Convention

Total Self Energy −iΣij

Electron Propagator iGaa′

q
(0−)

Photon Propagator iDkk′

q

Vertices −iλγk
ia

The meanings of the symbols and indices on the vertices and propagators has been given in the
lecture, or you can read1 for further information.

a) Write down the expression for Fig. 1 in terms of its respective components and vertices
without first performing any contraction of the indices. Recall that due to the validity of
Wick’s theorem the usual diagrammatic rules apply.

b) From the expression in a), perform all the necessary contractions of the indices, and
write down the individual components (i, j) of the self-energy matrix Σ in terms of the
propagators. In particular, show that ΣA =

(

ΣR
)∗

. Note: you don’t need to evaluate the
propagators!

c) Justify the fact that Σ21 = 0.

t1

t1

~q

k′

k′

a

a′

j

i

~k − ~q

Figure 1: The Fock diagram with the indices labeled.

1See equation 2.27 in J. Rammer, H. Smith, Rev. Mod. Phys., Vol. 58, No. 2 (1986); you can find this

paper from the course website.


