Condensed Matter Field Theory - WS09/10

Exercise 5

(Please return your solutions before Fr. 8.1., 12:00h)

5.1 Matsubara method

(15 points)
The Matsubara method is based on the assumption, that the time t is a completely imaginary parameter. Therefore one defines a real parameter by $\tau=\mathrm{i} t$.
An operator in Heisenberg representation then looks like

$$
A(\tau)=e^{\frac{1}{\hbar} H \tau} A(0) e^{-\frac{1}{\hbar} H \tau}
$$

and the equation of motion reads

$$
-\hbar \frac{\partial}{\partial \tau} A(\tau)=[A(\tau), H]_{-}
$$

The thermal Green's (or Matsubara) function is defined as

$$
G_{A B}^{M}\left(\tau, \tau^{\prime}\right)=-\left\langle T_{\tau}\left(A(\tau) B\left(\tau^{\prime}\right)\right)\right\rangle
$$

(a) Derive the equation of motion for $G_{A B}^{M}\left(\tau, \tau^{\prime}\right)$.
(b) Use the cyclic invariance of the trace to show that also $G_{A B}^{M}\left(\tau, \tau^{\prime}\right)$ depends only on time differences, i.e.

$$
G_{A B}^{M}\left(\tau, \tau^{\prime}\right)=G_{A B}^{M}\left(\tau-\tau^{\prime}, 0\right)=G_{A B}^{M}\left(0, \tau^{\prime}-\tau\right)
$$

(c) Use also the cyclic invariance of the trace to show the periodicity of the thermal function:

$$
G_{A B}^{M}\left(\tau-\tau^{\prime}+n \hbar \beta\right)=\varepsilon G_{A B}^{M}\left(\tau-\tau^{\prime}+(n-1) \hbar \beta\right)
$$

for $\hbar \beta>\tau-\tau^{\prime}+n \hbar \beta>0$ and $n \in \mathbb{Z}$.

In particular, for $n=1$ we find

$$
G_{A B}^{M}\left(\tau-\tau^{\prime}+\hbar \beta\right)=\varepsilon G_{A B}^{M}\left(\tau-\tau^{\prime}\right)
$$

when $-\hbar \beta<\tau-\tau^{\prime}<0$. The thermal Green's function is thus periodic with a periodicity intervall of $2 \hbar \beta$.
Because of this periodicity we can make use of a Fourier expansion for the thermal Green's function:

$$
\begin{aligned}
G^{M}(\tau) & =\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi}{\hbar \beta} \tau+b_{n} \sin \frac{n \pi}{\hbar \beta} \tau\right] \\
a_{n} & =\frac{1}{\hbar \beta} \int_{-\hbar \beta}^{+\hbar \beta} d \tau G^{M}(\tau) \cos \frac{n \pi}{\hbar \beta} \tau \\
b_{n} & =\frac{1}{\hbar \beta} \int_{-\hbar \beta}^{+\hbar \beta} d \tau G^{M}(\tau) \sin \frac{n \pi}{\hbar \beta} \tau
\end{aligned}
$$

With the definitions $E_{n}=\frac{n \pi}{\beta}$ and $G^{M}\left(E_{n}\right)=\frac{1}{2} \hbar \beta\left(a_{n}+\mathrm{i} b_{n}\right)$ we can then write:

$$
\begin{aligned}
G^{M}(\tau) & =\frac{1}{\hbar \beta} \sum_{n=-\infty}^{+\infty} e^{-\frac{i}{\hbar} E_{n} \tau} G^{M}\left(E_{n}\right) \\
G^{M}\left(E_{n}\right) & =\frac{1}{2} \int_{-\hbar \beta}^{+\hbar \beta} d \tau G^{M}(\tau) e^{\frac{i}{\hbar} E_{n} \tau}
\end{aligned}
$$

(d) The expression for $G^{M}\left(E_{n}\right)$ can be further simplified. Show that

$$
\begin{aligned}
G^{M}\left(E_{n}\right) & =\left[1+\varepsilon e^{-\mathrm{i} \beta E_{n}}\right] \frac{1}{2} \int_{0}^{\hbar \beta} d \tau G^{M}(\tau) e^{\frac{\mathrm{i}}{\hbar} E_{n} \tau} \\
& =\int_{0}^{\hbar \beta} d \tau G^{M}(\tau) e^{\frac{\mathrm{i}}{\hbar} E_{n} \tau}
\end{aligned}
$$

holds and conclude that

$$
E_{n}=\left\{\begin{aligned}
2 n \pi / \beta: & \text { Bosonen } \\
(2 n+1) \pi / \beta: & \text { Fermionen }
\end{aligned}\right.
$$

These are the so called Matsubara frequencies.
(e) Finally derive

$$
G_{A B}^{M}\left(E_{n}\right)=\int_{-\infty}^{+\infty} d E^{\prime} \frac{S_{A B}\left(E^{\prime}\right)}{\mathrm{i} E_{n}-E^{\prime}}
$$

Hint: First, using the spectral representation and the definition of the spectral function (see exercise 2.2) show that

$$
\langle A(\tau) B(0)\rangle=\frac{1}{\hbar} \int_{-\infty}^{+\infty} d E \frac{S_{A B}(E)}{1-\varepsilon e^{-\beta E}} e^{-\frac{1}{\hbar} E \tau}
$$

Plug this into the result for $G^{M}\left(E_{n}\right)$ of (d) and use

$$
\int_{0}^{\hbar \beta} d \tau e^{\frac{1}{\hbar}\left(\mathrm{i} E_{n}-E\right) \tau}=\frac{\hbar}{\mathrm{i} E_{n}-E}\left[\varepsilon e^{-\beta E}-1\right]
$$

Therefore, the retarded (advanced) Green's function can be obtained from the thermal Green's function by the transition $\mathrm{i} E \rightarrow E \pm \mathrm{i}^{+}$.

5.2 Selfenergy in $1^{\text {st }}$ order perturbation theory $(T \neq 0)$

The thermal Green's function is often denoted by

$$
G_{\mathbf{k} \sigma}^{M}(E)=G_{\mathbf{k} \sigma}(\mathrm{i} E)
$$

Dyson's equation reads

where the free thermal Green's function is given by

$$
G_{\mathbf{k} \sigma}^{0}(\mathrm{i} E)=\frac{\hbar}{\mathrm{i} E-\epsilon(\mathbf{k})+\mu}
$$

The Feynman rules read $(k \equiv(\mathbf{k}, \sigma))$

1. Vertex $\Leftrightarrow \frac{1}{\hbar \beta} v(k l ; n m) \delta_{E_{n_{k}}+E_{n_{l}}, E_{n_{m}}+E_{n_{n}}}$.
2. Propagating and non-propagating line $\Leftrightarrow-G_{k}^{0}\left(\mathrm{i} E_{n_{k}}\right)$.
3. Factor $\exp \left(\frac{\mathrm{i}}{\hbar} E_{n_{k}} 0^{+}\right)$for each non-propagating line.
4. Factor $(-1)^{S}\left(\frac{-1}{\hbar}\right)^{n}$, with S number of loops.
5. Summation/Integration over all internal wavenumbers, spins and energies.
6. External lines: $G_{k}^{0}\left(\mathrm{i} E_{n_{k}}\right)$.

In the calculation of $T \neq 0$ diagrams there will occur sums over the Matsubara frequencies. These Matsubara sums can be converted into an integral around the poles of the function which is summed over. For a given function F with $\lim _{|z| \rightarrow \infty} F(z)=0$

$$
\begin{equation*}
\frac{1}{\beta} \sum_{E_{n}} F\left(\mathrm{i} E_{n}\right)=-\oint_{C_{1}} \frac{d z}{2 \pi \mathrm{i}} f(z) F(z)=\oint_{C_{2}} \frac{d z}{2 \pi \mathrm{i}} f(z) F(z) \tag{1}
\end{equation*}
$$

holds. C_{1} encloses only the poles of $f(z)$ and C_{2} only those of $F(z)$.
(a) Prove (1). Use that the fermionic Matsubara frequencies are the poles of the Fermi function $f(z)$ to show the first equality. Continue by inflating the integral contour to infinity by sparing out the poles of $F(z)$ to show the second equality.
(b) Use the above Feynman rules and (1) to calculate the selfenergy in $1^{\text {st }}$ order perturbation theory for a general interaction V.

(c) Now, consider a pair interaction $V(\mathbf{x}, \mathbf{y})=V(|\mathbf{x}-\mathbf{y}|)$ for free electrons $(|k\rangle=|\mathbf{k} \sigma\rangle$ plane waves):

$$
v(k l ; n m)=\langle k, l| V|n, m\rangle=\delta_{\mathbf{k}+\mathbf{1}, \mathbf{n}+\mathbf{m}} \delta_{\sigma_{k} \sigma_{n}} \delta_{\sigma_{l} \sigma_{m}} \tilde{v}(\mathbf{k}-\mathbf{n})
$$

where $\tilde{v}(\mathbf{k}-\mathbf{n})=\tilde{v}(\mathbf{q})$ is the Fourier transform of V to calculate the selfenergy in 1st order perturbation theory.

