Detection of Superparticles

Electroweak Contributions to Squark Pair Production

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

Promotionskolloquium

in collaboration with Manuel Drees, Herbi K. Dreiner and Jong Soo Kim

Phys. Rev. D 76, 095020 (2007)

Outline

Introduction

- Standard Model and MSSM
- LHC and Proton–Proton Collisions
- Squark Pair Production

Electroweak Contributions

- Feynman Diagrams
- Numerical Results
- Dependence on Transverse Momentum of the Squarks

<ロ> (四) (四) (三) (三) (三)

- Dependence on Squark Mass
- Dependence on Gaugino Masses

3 Summary

1 Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Standard Model (SM) of Particle Physics...

- is a relativistic, renormalizable quantum field theory, which based on the gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$
- describes the matter particles, leptons and quarks (an electron is a lepton; a proton consists of three quarks)
- describes interactions of the matter particles:
 - electromagnetic interaction (force on charged particles)
 - weak interaction (decay of particles)
 - strong interaction (glue together protons)

Particle content of the Standard Model

- there are three generations of quarks and leptons (spin 1/2)
- there are gauge bosons (spin 1), which transfer the interations
- there is one hypothetical (not yet found) higgs boson (spin 0), which gives rise to the masses of the particles

Standard Model

・ロト ・回 ・ ・ ヨト ・

("http://www.hep.ucl.ac.uk/postgrad/")

BUT, the Standard Model cannot be the "final answer" since it does NOT...

- predict neutrino masses
- give an answer to the question why we have three generations of particles
- account for Dark Matter in the Universe
- include the fourth known fundamental interaction, gravity

...

Extension of the SM due to Supersymmetry (SUSY); SUSY...

- connects fermions (half-integer spin) and bosons (integer spin)
- each SM particle gets a Superpartner ("sparticles"), e.g. quark $q \implies$ squark \tilde{q}
- simplest possible realization of SUSY is given within the "Minimal Supersymmetric extension of the SM" (MSSM)
- MSSM provides a candidate for Dark Matter, enables the exact unification of the three couplings constants, ...

The MSSM and its particle spectrum

- there is second SU(2)-Higgs doublet with hypercharge Y = -1
- SUSY is not exact, sparticles do not have the same mass as their SM partners ⇒SUSY have to be broken ⇒adding soft-terms
- MSSM has 105 extra free parameters
- has "R-parity" conservation, sparticles will be produced always in pairs

Names	Boson Fields	Fermion Fields	SU(3) _C	$SU(2)_L$	<i>U</i> (1) _Y
gluons&gluinos	g ^a	$ ilde{g}^a$	8	0	0
W bosons&winos	W ⁱ	$ ilde{W}^i$	1	3	0
B boson&bino	В	Ĩ	1	1	0
sleptons&leptons	$ ilde{L}^{j}=(ilde{ u}, ilde{ extbf{e}})_{L}$	$(u, e)_L$	1	2	-1
	$ ilde{m{ extsf{E}}} = ilde{m{ extsf{e}}}_{R}^{*}$	e_R^\dagger	1	1	2
squarks&quarks	$ ilde{Q}^{j} = (ilde{u}, ilde{d})_{L}$	(<i>u</i> , <i>d</i>) _{<i>L</i>}	3	2	$\frac{1}{3}$
	$ ilde{U} = ilde{u}_R^*$	u_R^\dagger	3*	1	$-\frac{4}{3}$
	$ ilde{D} = ilde{d}_R^*$	d_R^\dagger	3*	1	<u>2</u> 3
Higgs&Higgsinos	H_1^i	$(ilde{H}^0_1, ilde{H}^1)_L$	1	2	-1
	H_2^i	$(ilde{H}^+_2, ilde{H}^0_2)_L$	1	2	1

The MSSM and its particle spectrum

- there is SU(2)-Higgs doublet with hypercharge Y = -1
- SUSY is not exact, sparticles do not have the same mass as their SM partners ⇒SUSY have to be broken ⇒adding soft-terms
- MSSM has 105 extra free parameters
- has "R-parity" conservation, sparticles will be produces always in pairs

Names	Boson Fields	Fermion Fields	SU(3) _C	$SU(2)_L$	<i>U</i> (1) _Y
gluons&gluinos	g ^a	$ ilde{g}^{a}$	8	0	0
W bosons&winos	W ⁱ	$ ilde{\mathcal{W}}^i$	1	3	0
B boson&bino	В	Ĩ	1	1	0
sleptons&leptons	$ ilde{L}^{j}=(ilde{ u}, ilde{ extbf{e}})_{L}$	$(u, e)_L$	1	2	-1
	$ ilde{m{ extsf{E}}} = ilde{m{ extsf{e}}}_{R}^{*}$	e_R^{\dagger}	1	1	2
squarks&quarks	$ ilde{Q}^{j} = (ilde{u}, ilde{d})_{L}$	(<i>u</i> , <i>d</i>) _{<i>L</i>}	3	2	$\frac{1}{3}$
	$ ilde{U} = ilde{u}_R^*$	u_R^\dagger	3*	1	$-\frac{4}{3}$
	$ ilde{D} = ilde{d}_R^*$	d_R^\dagger	3*	1	<u>2</u> 3
Higgs&Higgsinos	H_1^i	$(ilde{H}^0_1, ilde{H}^1)_L$	1	2	-1
	H_2^i	$(ilde{H}^+_2,\overline{ ilde{H}^0_2})_L$	1	2	1

イロト イヨト イヨト イヨト

æ

Gaugino Mass Eigenstates

particles with same $SU(3) \times U(1)_{EM}$ quantum numbers can mix after breaking electroweak symmetry breaking of $SU(2)_L \times U(1)_Y$:

- charginos χ_i[±] are linear combination of charged winos (W

 ⁺, W

 ⁻) and charged higgsinos (H

 ⁻₁, H

 ⁺₂)
- neutralinos χ_i^0 are linear combinations of neutral wino (\tilde{W}^3), bino (\tilde{B}) and neutral higgsinos (\tilde{H}_1^0 , \tilde{H}_2^0)

mSUGRA

- MSSM has 105 (!) new parameter MSSM: mSUGRA, here only 5 free parameter left:
 - $m_0, m_{1/2}$: scalar and gaugino mass
 - A₀: trilinear coupling
 - tan β: ratio of vaccum expectation values of the Higgses
 - sgn(μ): sign of the Higgsino mass parameter
- after choice of the five parameters
 —> you get masses of the sparticles, parameters for mixing, ...

Search for Supersymmetry

- no direct experimental evidence for SUSY until now
- expectation that some of the SUSY particles will be found at the Large Hadron Collider (LHC) at CERN:
 - is a proton-proton circular collider
 - is the world's largest particle accelerator (circle of 27km)
 - is the world's highest–energy particle accelerator ($E_{cm} = 14 TeV$)
 - will be go on line in the end of 2008

(very) simplified picture of a proton–proton collision at the LHC:

- one quark of each proton (uud) interact with each other
- probability to find a special quark within a proton is described by so called "parton-distribution functions" (pdf's) f(x, Q²)
- probability for an interaction between two quarks is given by the corresponding cross section $\hat{\sigma}$
- the cross section $\hat{\sigma}$ can be calculated with the help of Feynman diagrams

(very) simplified picture of a p-p collision continue

cross section σ for an process is given by:

$$\sigma = \int d\mathbf{x}_1 \int d\mathbf{x}_2 f(\mathbf{x}_1, \mu^2) f'(\mathbf{x}_2, \mu^2) \hat{\sigma}(\hat{\mathbf{s}}, \mu^2)$$

- µ: factorization scale
- f(x_i, μ²): pdf for proton i; fraction x_i of the proton energy was given to the corresponding quark
- *ô*(ŝ, μ²) parton cross section for the interaction of the two quarks
 (ŝ = x₁x₂s, √s = E_{cm})

Squark Pair Production at the LHC

- TeV scale Supersymmetry will be decisively tested at the LHC (*E_{cm}* = 14*T*eV)
- squark pairs can be produced via leading order strong interactions
- cross section is $\mathcal{O}(\alpha_s^2)$, e.g.:
 - $m_{\tilde{q}} \approx 1000 \, \text{GeV}$ $\sigma \approx 0.5 \, \text{pb}$ $\mathcal{L} \approx 10 \, \text{fb}^{-1} \, \text{per year}$ $N_{\text{events}} = \mathcal{L} \, \sigma$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

5000 events are expected at low luminosity

Role of electroweak (EW) contributions

5000 events \Longrightarrow

It should be possible to measure the squark pair production cross section with a statistical uncertainty of a few percent.

 \implies

We need accurate theoretical predictions:

- NLO QCD corrections in addition to the LO cross section (Beenakker, Hopker, Spira and Zerwas, 1995)
- remaining uncertanity from yet higher order QCD corrections should be at 10% level

Thus EW corrections at leading order might be important since:

- the interference terms between QCD and EW can be quite sizable
- they can give rise to an increase up to 20% for mSUGRA scenarios and two SU(2) doublet squarks
- they can give rise to an increase up to 50% for scenarios without gaugino mass unification and two SU(2) doublet squarks

QCD: Diagrams for Leading Order Squark Pair Production

2 Electroweak Contributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\eta q' \rightarrow \tilde{q} \tilde{q}'$: t– or/and u–channel neutralino exchange

Notation:

- *i*, *j*: denotes the generation
- α, β : denotes the chirality (L– and R–type) of the squarks
- *m*: labels the exchanged neutralino mass eigenstate Remarks:
 - there are no s-channel contributions
 - there are t- and u-channel (i=j) diagrams for neutralino exchange

qq' → q̃q̃': t– or u–channel chargino exchange

- there is no gluino u-channel contribution
- u-channel chargino diagrams exist only for i = j
- sole chargino t– channel contribution for $u_i d_j \rightarrow \tilde{d}_{i\alpha} \tilde{u}_{j\beta}$ and $i \neq j$

$q\bar{q}' \rightarrow q\bar{q}': \gamma, Z, g$ boson s-channel exchange

<ロ> (四) (四) (三) (三) (三) (三)

- there are s–channel diagrams for $q\bar{q}'$ initial states
- γ , *Z*, *g* boson s–channel conntributions for *i* = *j*

qq̈́ → q̈̈q̈́: W boson s–channel exchange

Remarks:

• W boson s-channel conntributions for i = j

• sole W boson s–channel conntribution for $d_i \bar{u}_i \rightarrow \tilde{d}_{j\alpha} \bar{\tilde{u}}_{j\beta}$ and $i \neq j$

Parameter choice

- we take equal factorization and renormalization scales: $\mu_F = \mu_R = m_{\tilde{q}}/2$
- we do not consider 3. generation squarks (have no mentionable EW contributions)
- we do not consider gluon fusion contributions in the initial states (have no EW contributions in LO)

イロト イヨト イヨト イヨト

Parton Distribution Functions

(Durham University On-line Plotting and Calculation page)

Results

mSUGRA	<i>m</i> ₀	$m_{1/2}$	m _ã	QCD[pb]		QCD + EW[pb]		ratio	
	[GeV]	[GeV]	[GeV]	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.055	0.013	0.057	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

- EW contribution is more important for two SU(2) doublet squarks, due to $(g_2/g_Y)^2 = \cot^2 \theta_w \approx 3.3$
- EW contribution depends on the ratio $m_{1/2}/m_0$
- EW contribution becomes more important for heavier squarks if ratio m₀/m_{1/2} remains roughly the same

Results

mSUGRA	m_0	$m_{1/2}$	m _ã	QCD[pb]		QCD +	EW[pb]	ratio	
	[GeV]	[GeV]	[GeV]	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.055	0.013	0.057	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

- EW contribution is more important for two SU(2) doublet squarks, due to (g₂/g_Y)² = cot² θ_w ≈ 3.3
- EW contribution depends on the ratio $m_{1/2}/m_0$
- EW contribution becomes more important for heavier squarks if ratio m₀/m_{1/2} remains roughly the same

Results

mSUGRA	<i>m</i> ₀	$m_{1/2}$	m _ã	QCD[pb]		QCD + EW[pb]		ratio	
	[GeV]	[GeV]	[GeV]	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.055	0.013	0.057	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

- EW contribution is more important for two SU(2) doublet squarks, due to $(g_2/g_Y)^2 = \cot^2 \theta_w \approx 3.3$
- EW contribution depends on the ratio $m_{1/2}/m_0$
- EW contribution becomes more important for heavier squarks if ratio m₀/m_{1/2} remains roughly the same

Results

mSUGRA	<i>m</i> ₀	$m_{1/2}$	m _ã	QCD[pb]		QCD +	EW[pb]	ratio	
	[GeV]	[GeV]	[GeV]	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.055	0.013	0.057	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

- EW contribution is more important for two SU(2) doublet squarks, due to $(g_2/g_Y)^2 = \cot^2 \theta_w \approx 3.3$
- EW contribution depends on the ratio $m_{1/2}/m_0$
- EW contribution becomes more important for **heavier** squarks if ratio $m_0/m_{1/2}$ remains roughly the same

Helicity flip and threshold behaviour:

Processes like $u_L u_L \rightarrow \tilde{u}_L \tilde{u}_L$:

- matrix element is proportional to mass of exchanged gaugino (helicity flip)
- both quarks have to be left–handed ⇒
 total momentum J = 0; squarks are in a s–wave
- $\sigma_{\rm total} \propto eta$,

where
$$\beta = v = \frac{p}{E} = \sqrt{1 - \frac{4m_{\tilde{q}}^2}{\hat{s}}}$$

Processes like $u_L u_R \rightarrow \tilde{u}_L \tilde{u}_R$:

 matrix element is NOT proportional to mass of exchanged gaugino (no helicity flip)

 addition of right– and left–handed quark ⇒ total momentum J = 1; squarks are in a p–wave

•
$$\sigma_{\rm total} \propto \beta^3$$

		diagra	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
1	$uu ightarrow ilde{u}_L ilde{u}_L$	<i>t</i> , <i>u</i>	<i>t</i> , <i>u</i>	yes	β	0.683	0.794	1.162
2	$uu ightarrow ilde{u}_R ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.761	0.796	1.045
3	$uu ightarrow ilde{u}_L ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.929	0.931	1.002
4	$dd ightarrow ilde{d}_L ilde{d}_L$	t, u	<i>t</i> , <i>u</i>	yes	β	0.198	0.232	1.171
5	$dd ightarrow { ilde d}_R { ilde d}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.234	0.237	1.012
6	$dd ightarrow ilde{d}_L ilde{d}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.243	0.243	1.000
7	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_L \widetilde{\mathit{d}}_L$	t	<i>t</i> , <i>u</i>	yes	β	0.969	1.22	1.261

- possible interference between t- and u-channel diagrams
- processes with two SU(2) doublet squarks have:
 - constructive (positive) interference terms between QCD and EW
 - helictiy flip, so $\sigma \propto \beta$ and $\mathcal{M} \propto M_{\tilde{G}}$
- cross sections are sizable due to two valence quarks

		diagra	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
1	$uu ightarrow ilde{u}_L ilde{u}_L$	<i>t</i> , <i>u</i>	<i>t</i> , <i>u</i>	yes	β	0.683	0.794	1.162
2	$uu ightarrow ilde{u}_R ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.761	0.796	1.045
3	$uu ightarrow ilde{u}_L ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.929	0.931	1.002
4	$dd ightarrow ilde{d}_L ilde{d}_L$	t, u	<i>t</i> , <i>u</i>	yes	β	0.198	0.232	1.171
5	$dd ightarrow { ilde d}_R { ilde d}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.234	0.237	1.012
6	$dd ightarrow ilde{d}_L ilde{d}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.243	0.243	1.000
7	$ud ightarrow ilde{u}_L ilde{d}_L$	t	<i>t</i> , <i>u</i>	yes	β	0.969	1.22	1.261

possible interference between t– and u–channel diagrams

- processes with two SU(2) doublet squarks have:
 - constructive (positive) interference terms between QCD and EW
 - helictiy flip, so $\sigma \propto \beta$ and $\mathcal{M} \propto M_{\tilde{G}}$
- cross sections are sizable due to two valence quarks

		diagra	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
1	$uu ightarrow ilde{u}_L ilde{u}_L$	<i>t</i> , <i>u</i>	<i>t</i> , <i>u</i>	yes	β	0.683	0.794	1.162
2	$uu ightarrow ilde{u}_R ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.761	0.796	1.045
3	$uu ightarrow ilde{u}_L ilde{u}_R$	t, u	t, u	no	β^3	0.929	0.931	1.002
4	$dd ightarrow ilde{d}_L ilde{d}_L$	t, u	<i>t</i> , <i>u</i>	yes	β	0.198	0.232	1.171
5	$dd ightarrow { ilde d}_R { ilde d}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.234	0.237	1.012
6	$dd ightarrow ilde{d}_L ilde{d}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.243	0.243	1.000
7	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_L \widetilde{\mathit{d}}_L$	t	<i>t</i> , <i>u</i>	yes	β	0.969	1.22	1.261

- possible interference between t- and u-channel diagrams
- processes with two SU(2) doublet squarks have:
 - constructive (positive) interference terms between QCD and EW
 - helictiy flip, so $\sigma \propto \beta$ and $\mathcal{M} \propto M_{\tilde{G}}$
- cross sections are sizable due to two valence quarks

		diagra	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
1	$uu ightarrow ilde{u}_L ilde{u}_L$	<i>t</i> , <i>u</i>	<i>t</i> , <i>u</i>	yes	β	0.683	0.794	1.162
2	$uu ightarrow ilde{u}_R ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.761	0.796	1.045
3	$uu ightarrow ilde{u}_L ilde{u}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.929	0.931	1.002
4	$dd ightarrow ilde{d}_L ilde{d}_L$	t, u	<i>t</i> , <i>u</i>	yes	β	0.198	0.232	1.171
5	$dd ightarrow { ilde d}_R { ilde d}_R$	t, u	<i>t</i> , <i>u</i>	yes	β	0.234	0.237	1.012
6	$dd ightarrow ilde{d}_L ilde{d}_R$	t, u	<i>t</i> , <i>u</i>	no	β^3	0.243	0.243	1.000
7	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_L \widetilde{\mathit{d}}_L$	t	<i>t</i> , <i>u</i>	yes	β	0.969	1.22	1.261

- possible interference between t- and u-channel diagrams
- processes with two SU(2) doublet squarks have:
 - constructive (positive) interference terms between QCD and EW
 - helictiy flip, so $\sigma \propto \beta$ and $\mathcal{M} \propto M_{\tilde{G}}$
- cross sections are sizable due to two valence quarks

		diagr	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
8	$uar{u} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s, t	s, t	no	β^3	0.165	0.140	0.848
9	$u \overline{u} ightarrow \widetilde{u}_R \overline{\widetilde{u}}_R$	s, t	s, t	no	β^3	0.187	0.170	0.909
10	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_L$	s, t	s, t	no	β^3	0.0925	0.0784	0.847
11	$dar{d} ightarrow \widetilde{d}_R ar{ ilde{d}}_R$	s, t	s, t	no	β^3	0.109	0.106	0.972
12	$u ar{u} ightarrow \widetilde{d}_L \widetilde{d}_L$	s	s, t	no	β^3	0.0341	0.0353	1.035
13	$d\bar{d} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s	s, t	no	β^3	0.0207	0.0219	1.057
14	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_L$	t	s, t	no	β^3	0.178	0.162	0.910

- possible interference between s
 and t
 –channel diagrams
- nearly all processes have reduction of total cross section due to destructive interfence terms between QCD and EW
- all processes have no helictiy flip, so $\sigma\propto\beta^3$
- small size of the cross section due to an anti-quark as initial state

		diagr	ams	helicity	thre-	Cross	section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
8	$uar{u} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s, t	s, t	no	β^3	0.165	0.140	0.848
9	$u \overline{u} ightarrow \widetilde{u}_R \overline{\widetilde{u}}_R$	s, t	s, t	no	β^3	0.187	0.170	0.909
10	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_L$	s, t	s, t	no	β^3	0.0925	0.0784	0.847
11	$dar{d} ightarrow \widetilde{d}_R ar{ ilde{d}}_R$	s, t	s, t	no	β^3	0.109	0.106	0.972
12	$u ar{u} ightarrow \widetilde{d}_L \widetilde{d}_L$	s	s, t	no	β^3	0.0341	0.0353	1.035
13	$d\bar{d} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s	s, t	no	β^3	0.0207	0.0219	1.057
14	$uar{d} ightarrow ilde{u}_Lar{ ilde{d}}_L$	t	s, t	no	β^3	0.178	0.162	0.910

- possible interference between s- and t-channel diagrams
- nearly all processes have reduction of total cross section due to destructive interfence terms between QCD and EW
- all processes have no helictiy flip, so $\sigma\propto\beta^3$
- small size of the cross section due to an anti-quark as initial state

		diagr	diagrams		thre-	re- cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
8	$uar{u} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s, t	s, t	no	β^3	0.165	0.140	0.848
9	$u \overline{u} ightarrow \widetilde{u}_R \overline{\widetilde{u}}_R$	s, t	s, t	no	β^3	0.187	0.170	0.909
10	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_L$	s, t	s, t	no	β^3	0.0925	0.0784	0.847
11	$d\bar{d} ightarrow \tilde{d}_R ilde{d}_R$	s, t	s, t	no	β^3	0.109	0.106	0.972
12	$u ar{u} ightarrow \widetilde{d}_L \widetilde{d}_L$	s	s, t	no	β^3	0.0341	0.0353	1.035
13	$d\bar{d} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s	s, t	no	β^3	0.0207	0.0219	1.057
14	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_L$	t	s, t	no	β^3	0.178	0.162	0.910

- possible interference between s
 and t
 –channel diagrams
- nearly all processes have reduction of total cross section due to destructive interfence terms between QCD and EW
- all processes have no helictiv flip, so $\sigma \propto \beta^3$
- small size of the cross section due to an anti-quark as initial state

		diagra	diagrams		thre-	cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
8	$u \overline{u} ightarrow \widetilde{u}_L \overline{\widetilde{u}}_L$	s, t	s, t	no	β^3	0.165	0.140	0.848
9	$u \overline{u} ightarrow \widetilde{u}_R \overline{\widetilde{u}}_R$	s, t	s, t	no	β^3	0.187	0.170	0.909
10	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_L$	s, t	s, t	no	β^3	0.0925	0.0784	0.847
11	$d\bar{d} ightarrow \tilde{d}_R ilde{d}_R$	s, t	s, t	no	β^3	0.109	0.106	0.972
12	$u ar{u} ightarrow \widetilde{d}_L \widetilde{d}_L$	s	s, t	no	β^3	0.0341	0.0353	1.035
13	$d\bar{d} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s	s, t	no	β^3	0.0207	0.0219	1.057
14	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_L$	t	s, t	no	β^3	0.178	0.162	0.910

- possible interference between s
 and t
 –channel diagrams
- nearly all processes have reduction of total cross section due to destructive interfence terms between QCD and EW
- all processes have **no** helictly flip, so $\sigma \propto \beta^3$
- small size of the cross section due to an anti-quark as initial state

		diagrams		helicity	thre-	Cross	cross section [pb]	
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
8	$uar{u} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s, t	s, t	no	β^3	0.165	0.140	0.848
9	$u \overline{u} ightarrow \widetilde{u}_R \overline{\widetilde{u}}_R$	s, t	s, t	no	β^3	0.187	0.170	0.909
10	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_L$	s, t	s, t	no	β^3	0.0925	0.0784	0.847
11	$dar{d} ightarrow \widetilde{d}_R ar{ ilde{d}}_R$	s, t	s, t	no	β^3	0.109	0.106	0.972
12	$u ar{u} ightarrow \widetilde{d}_L \widetilde{d}_L$	s	s, t	no	β^3	0.0341	0.0353	1.035
13	$d\bar{d} ightarrow ilde{u}_L ar{ ilde{u}}_L$	s	s, t	no	β^3	0.0207	0.0219	1.057
14	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_L$	t	s, t	no	β^3	0.178	0.162	0.910

- possible interference between s
 and t
 –channel diagrams
- nearly all processes have reduction of total cross section due to destructive interfence terms between QCD and EW
- all processes have no helictiy flip, so $\sigma\propto\beta^3$
- small size of the cross section due to an anti-quark as initial state

		diagr	ams	helicity	thre-	cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
15	$ud ightarrow \widetilde{u}_L \widetilde{d}_R$	t	t	no	β^3	0.484	0.485	1.001
16	$\textit{ud} ightarrow ilde{\textit{u}}_R ilde{\textit{d}}_L$	t	t	no	β^3	0.477	0.479	1.002
17	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_R \widetilde{\mathit{d}}_R$	t	t	yes	β	1.113	1.114	1.001
18	$u \overline{u} ightarrow \widetilde{u}_L \overline{\widetilde{u}}_R$	t	t	yes	β	0.569	0.569	1.000
19	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_R$	t	t	yes	β	0.331	0.331	1.000
20	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_R$	t	t	yes	β	0.491	0.491	1.000
21	$u\bar{d} ightarrow \tilde{u}_R \bar{\tilde{d}}_L$	t	t	yes	β	0.480	0.480	1.000
22	$uar{d} ightarrow ilde{u}_R ar{ ilde{d}}_R$	t	t	no	β^3	0.202	0.203	1.004
23	$uar{u} o ilde{d}_R ar{ ilde{d}}_R$	s	s	-	β^3	0.0420	0.0421	1.002
24	$dar{d} ightarrow ilde{u}_R ar{ ilde{u}}_R$	s	s	-	β^3	0.0240	0.0240	1.000

no interference between EW and QCD contributions

- all electroweak contributions are positive but very small due to at least one initial SU(2) singlet
- cross sections for the first eight processes are sizable

		diagr	ams	helicity	thre-	cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
15	$ud ightarrow \widetilde{u}_L \widetilde{d}_R$	t	t	no	β^3	0.484	0.485	1.001
16	$\textit{ud} ightarrow ilde{\textit{u}}_R ilde{\textit{d}}_L$	t	t	no	β^3	0.477	0.479	1.002
17	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_R \widetilde{\mathit{d}}_R$	t	t	yes	β	1.113	1.114	1.001
18	$u \overline{u} ightarrow \widetilde{u}_L \overline{\widetilde{u}}_R$	t	t	yes	β	0.569	0.569	1.000
19	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_R$	t	t	yes	β	0.331	0.331	1.000
20	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_R$	t	t	yes	β	0.491	0.491	1.000
21	$u\bar{d} ightarrow \tilde{u}_R \bar{\tilde{d}}_L$	t	t	yes	β	0.480	0.480	1.000
22	$uar{d} ightarrow ilde{u}_R ar{ ilde{d}}_R$	t	t	no	β^3	0.202	0.203	1.004
23	$uar{u} ightarrow \widetilde{d}_R ar{ ilde{d}}_R$	s	s	-	β^3	0.0420	0.0421	1.002
24	$dar{d} ightarrow ilde{u}_R ar{ ilde{u}}_R$	s	s	-	β^3	0.0240	0.0240	1.000

• no interference between EW and QCD contributions

- all electroweak contributions are positive but very small due to at least one initial SU(2) singlet
- cross sections for the first eight processes are sizable

		diagr	ams	helicity	thre-	cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
15	$ud ightarrow \widetilde{u}_L \widetilde{d}_R$	t	t	no	β^3	0.484	0.485	1.001
16	$\textit{ud} ightarrow ilde{\textit{u}}_R ilde{\textit{d}}_L$	t	t	no	β^3	0.477	0.479	1.002
17	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_R \widetilde{\mathit{d}}_R$	t	t	yes	β	1.113	1.114	1.001
18	$u \overline{u} ightarrow \widetilde{u}_L \overline{\widetilde{u}}_R$	t	t	yes	β	0.569	0.569	1.000
19	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_R$	t	t	yes	β	0.331	0.331	1.000
20	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_R$	t	t	yes	β	0.491	0.491	1.000
21	$u\bar{d} ightarrow \tilde{u}_R \bar{\tilde{d}}_L$	t	t	yes	β	0.480	0.480	1.000
22	$uar{d} ightarrow ilde{u}_R ar{ ilde{d}}_R$	t	t	no	β^3	0.202	0.203	1.004
23	$uar{u} o ilde{d}_R ar{ ilde{d}}_R$	s	s	-	β^3	0.0420	0.0421	1.002
24	$dar{d} ightarrow ilde{u}_R ar{ ilde{u}}_R$	s	s	-	β^3	0.0240	0.0240	1.000

no interference between EW and QCD contributions

- all electroweak contributions are **positive but very small** due to at least one initial SU(2) singlet
- cross sections for the first eight processes are sizable

		diagr	ams	helicity	thre-	cross section [pb]		
No.	Process	QCD	EW	flip?	shold	QCD	QCD + EW	ratio
15	$ud ightarrow \widetilde{u}_L \widetilde{d}_R$	t	t	no	β^3	0.484	0.485	1.001
16	$\textit{ud} ightarrow ilde{\textit{u}}_R ilde{\textit{d}}_L$	t	t	no	β^3	0.477	0.479	1.002
17	$\mathit{ud} ightarrow \widetilde{\mathit{u}}_R \widetilde{\mathit{d}}_R$	t	t	yes	β	1.113	1.114	1.001
18	$u \overline{u} ightarrow \widetilde{u}_L \overline{\widetilde{u}}_R$	t	t	yes	β	0.569	0.569	1.000
19	$dar{d} ightarrow \widetilde{d}_L ar{ ilde{d}}_R$	t	t	yes	β	0.331	0.331	1.000
20	$uar{d} ightarrow ilde{u}_L ar{ ilde{d}}_R$	t	t	yes	β	0.491	0.491	1.000
21	$u\bar{d} ightarrow \tilde{u}_R \bar{\tilde{d}}_L$	t	t	yes	β	0.480	0.480	1.000
22	$uar{d} ightarrow ilde{u}_R ar{ ilde{d}}_R$	t	t	no	β^3	0.202	0.203	1.004
23	$uar{u} ightarrow \widetilde{d}_R ar{ ilde{d}}_R$	s	s	-	β^3	0.0420	0.0421	1.002
24	$dar{d} ightarrow ilde{u}_R ar{ ilde{u}}_R$	s	s	-	β^3	0.0240	0.0240	1.000

no interference between EW and QCD contributions

- all electroweak contributions are positive but very small due to at least one initial SU(2) singlet
- cross sections for the first eight processes are sizable

Ratio of EW and QCD t- or u-channel propagator is given by

$$rac{EW}{QCD}pprox rac{2 p_T^2 + m_{ ilde{q}}^2 + M_{ ilde{g}}^2}{2 p_T^2 + m_{ ilde{q}}^2 + M_{ ilde{W}}^2}$$

where

- *p_T* is the transverse momentum of the squarks
- $m_{\tilde{q}}/m_{\tilde{g}}$ is the squark/gluino mass
- *M_{W̃}* is the relevant chargino or neutralino mass

- enhancement by a factor of 2 for small p_T for $m_{\tilde{q}} \approx M_{\tilde{g}} \gg M_{\tilde{W}}$ (nearly all SPS scenarios)
- enhancement vanishes for $2p_T^2 \gg m_{\tilde{a}}^2$
- enhancement vanishes for $m_{\tilde{q}}^2 \gg M_{\tilde{q}}^2$ (given in SPS 2)

Ratio of EW and QCD t- or u-channel propagator is given by

$$rac{EW}{QCD}pprox rac{2
ho_T^2+m_{ ilde{q}}^2+M_{ ilde{g}}^2}{2
ho_T^2+m_{ ilde{q}}^2+M_{ ilde{W}}^2}$$

where

- *p_T* is the transverse momentum of the squarks
- *m_ã* is the squark mass
- *M*_{*W̃*} is the relevant chargino or neutralino mass

- enhancement by a factor of 2 for small p_T for $m_{\tilde{q}} \approx m_{\tilde{g}} \gg M_{\tilde{W}}$ (nearly all SPS scenarios)
- enhancement vanishes for $2p_T^2 \gg m_{\tilde{q}}^2$
- enhancement vanishes for $m_{\tilde{q}}^2 \gg M_{\tilde{q}}^2$ (given in SPS 2)

Ratio of EW and QCD t- or u-channel propagator is given by

$$rac{EW}{QCD}pprox rac{2
ho_T^2+m_{ ilde{q}}^2+M_{ ilde{g}}^2}{2
ho_T^2+m_{ ilde{q}}^2+M_{ ilde{W}}^2}$$

where

- *p_T* is the transverse momentum of the squarks
- *m_ã* is the squark mass
- $M_{\tilde{W}}$ is the relevant chargino or neutralino mass

- enhancement by a factor of 2 for small p_T for $m_{\tilde{q}} \approx M_{\tilde{g}} \gg M_{\tilde{W}}$ (nearly all SPS scenarios)
- enhancement vanishes for $2p_T^2 \gg m_{\tilde{a}}^2$
- enhancement vanishes for $m_{\tilde{q}}^2 \gg M_{\tilde{q}}^2$ (given in SPS 2)

Ratio of EW and QCD t- or u-channel propagator is given by

$$rac{EW}{QCD}pprox rac{2
ho_T^2 + m_{ ilde{q}}^2 + M_{ ilde{g}}^2}{2
ho_T^2 + m_{ ilde{q}}^2 + M_{ ilde{W}}^2}$$

where

- *p_T* is the transverse momentum of the squarks
- *m_ã* is the squark mass
- $M_{\tilde{W}}$ is the relevant chargino or neutralino mass

- enhancement by a factor of 2 for small p_T for $m_{\tilde{q}} \approx M_{\tilde{g}} \gg M_{\tilde{W}}$ (nearly all SPS scenarios)
- enhancement vanishes for $2p_T^2 \gg m_{\tilde{a}}^2$
- enhancement vanishes for $m_{\tilde{a}}^2 \gg M_{\tilde{a}}^2$ (given in SPS 2)

Dependence on squark mass

Larger squark masses give rise to:

• smaller values of β due to reduction of the phase space

$$eta = \sqrt{1 - rac{4m_{ ilde{q}}^2}{\hat{ extsf{s}}}}$$

anti-quarks suffer higher suppression than quarks (Bjorken-x)

$$\hat{\mathbf{s}} = 4\left(m_{\tilde{q}}^2 + \frac{p_T^2}{\sin^2\theta}\right), \hat{\mathbf{s}} = \mathbf{x_1}\mathbf{x_2}\mathbf{s}$$

So larger squark masses lead to:

- higher suppression of the destructive interference terms of category 2, which have an anti–quark and $\sigma \propto \beta^3$
- nearly all processes of category 3 have anti–quark or/and $\sigma \propto \beta^3$ suppressions

→ higher weighting of the positive contributions

Dependence on gaugino masses

• category 1 \propto to $M_{\tilde{g}}M_{\tilde{W}}$, so sensitive to ratio of gaugino masses • in mSUGRA:

 $M_1: M_2: M_3 \sim 1:2:7$ at the weak scale

⇒ larger EW contributions without gaugino mass unification

For example, vary M_2 at the weak scale:

• maximum of curve is at $M_2 = m_{\tilde{q}}$, since it maximizes

$$\frac{M_2}{\hat{t} - M_2^2}$$

*M*₂ < 0 (keep sign of *M*_{g̃}) leads to negative EW contributions due to change of the sign of the interference terms of category 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

(日) (四) (注) (注) (三) (三)

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

(日) (四) (注) (注) (三) (三)

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

《曰》 《圖》 《臣》 《臣》 三臣

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

《曰》 《圖》 《臣》 《臣》 三臣

- MSSM: each SM particle gets a superpartner
- TeV scale SUSY will be tested at the LHC
- squark pair production will be important; determination of the production cross section with a high precision
- even leading order EW contributions might be important
- EW correction increases with the squark mass
- EW effects can reduce or enhance the total cross section by more than a factor of 1.55
- for gaugino mass unification, the enhancement factor is 1.4
- EW contribution might give a new, independent handle on the gaugino mass parameters

《曰》 《聞》 《臣》 《臣》 三臣 …

Thank you!! Questions?!

・ ロト ・ 個 ト ・ ヨト ・ ヨト ・ ヨー・ つへぐ

Gauge coupling unification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Parton Distribution Functions

(Durham University On-line Plotting and Calculation page)

∃ <200</p>

æ

・ロト ・四ト ・ヨト ・

mSUGRA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Mass eigenstates

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Dependence on p_T continue

There are three cases of decrease for large p_T ; why?!:

• interference terms of category 1:

$\propto M_{\tilde{g}}M_{\tilde{W}}$ (helicity flip),

this has to be compensated by an extra factor of p_{T}^{-2} for large p_{T}

 negative interference terms of category 2 (no helicity flip) have suppression for large p_T due to anti-quark in the initial state

$$\hat{\mathbf{s}} = \mathbf{4} \left(m_{\tilde{q}}^2 + rac{\mathbf{p}_T^2}{\sin^2 \theta}
ight) , \hat{\mathbf{s}} = \mathbf{x} \mathbf{s}$$

Thus:

- category 1 and 2 have competing suppressions factors
- o for the three cases: category 2 dominates slightly
- larger suppression of category 2 for larger squark masses

Dependence on squark mass continue

Two further observations:

- increase of the cross section can be much different for a fixed squark mass
- maximal relative size of EW contributions larger than the most favorable single process of category 1

For smaller squark masses (larger β) the weighting of processes with squared t–channel and u–channel propagators is higher:

• t-channel propagator is given by

$$\frac{1}{\hat{t}-M_{\tilde{q}}^2}=\frac{1}{m_{\tilde{q}}^2-\frac{\hat{s}}{2}(1-\beta\cos\theta)-M_{\tilde{g}}^2}\,,$$

 \implies highest contributions for large $\beta |\cos \theta|$

- pure QCD gives largest contributions to processes with non-mixed propagators (for u-channel replace $\cos \theta \rightarrow -\cos \theta$)
- pure QCD interference terms (mixed propagators) are destructive

Signal I

- EW contribution is much smaller for SU(2) singlet final states
- for $m_{\widetilde{g}} > m_{\widetilde{q}} > |M_2|, |M_1|$
- SU(2) doublets decay into charginos and neutralinos dominated by SU(2) gaugino components, in mSUGRA: $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$
- SU(2) singlets decay into bino–like neutralinos, in mSUGRA: $\tilde{\chi}_1^0$

 the rate for doublet squarks can therefore be experimentally enhanced by the presence of energetic, isolated charged leptons, 2 jets and missing transverse momentum

Rapidity gaps

- in EW channels, both partons are not color-connected
- if both jets are not color-connected, gluons will fill the phase space between the jets and the beam remnants
- if both jets are color-connected, the phase space between both jets will be filled by gluons

(日) (四) (三) (三) (三)