A SUSY SO(10) **GUT with 2 Intermediate Scales**

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

1 Motivation: SO(10), intermediate scales

1 Motivation: SO(10), intermediate scales2 The Model

- **1** Motivation: SO(10), intermediate scales
- 2 The Model
- **3 Neutralino Dark Matter**

Contents

- 1 Motivation: SO(10), intermediate scales
- 2 The Model
- **3 Neutralino Dark Matter**
- 4 LHC Phenomenology

Contents

- 1 Motivation: SO(10), intermediate scales
- 2 The Model
- **3 Neutralino Dark Matter**
- 4 LHC Phenomenology
- 5 Summary

Contents

- 1 Motivation: SO(10), intermediate scales
- 2 The Model
- **3 Neutralino Dark Matter**
- 4 LHC Phenomenology
- 5 Summary

Based on: MD, Ju Min Kim, arXiv:0810.1875v1 (JHEP); MD, Ju Min Kim, Eun-Kyung Park, to appear very soon

3 gauge couplings of SM unify quite nicely in MSSM

- 3 gauge couplings of SM unify quite nicely in MSSM
- Minimal unified group has rank 4: SU(5).

- 3 gauge couplings of SM unify quite nicely in MSSM
- Minimal unified group has rank 4: SU(5).
- In SU(5), ν_R would have to be gauge singlet.

- 3 gauge couplings of SM unify quite nicely in MSSM
- Minimal unified group has rank 4: SU(5).
- In SU(5), ν_R would have to be gauge singlet.
- Instead, in SO(10): ν_R required to fill <u>16</u> with matter (s)fermions!

- 3 gauge couplings of SM unify quite nicely in MSSM
- Minimal unified group has rank 4: SU(5).
- In SU(5), ν_R would have to be gauge singlet.
- Instead, in SO(10): ν_R required to fill <u>16</u> with matter (s)fermions!
- Naturally allows to implement see—saw mechanism!

• SO(10) has rank 5

- SO(10) has rank 5
- Usually need several Higgs reps to break it to SM gauge group

- SO(10) has rank 5
- Usually need several Higgs reps to break it to SM gauge group
- No reason why the corresponding vevs should be the same

- SO(10) has rank 5
- Usually need several Higgs reps to break it to SM gauge group
- No reason why the corresponding vevs should be the same
- See—saw:

$$m_{\nu} = \frac{m_{\nu_D}^2}{M_{\nu_R}} < 3 \text{ meV},$$

if $m_{\nu_D} \le m_t = 170 \text{ GeV}, \ M_{\nu_R} \simeq M_X \ge 10^{16} \text{ GeV}!$

- SO(10) has rank 5
- Usually need several Higgs reps to break it to SM gauge group
- No reason why the corresponding vevs should be the same
- See—saw:

$$m_{\nu} = \frac{m_{\nu_D}^2}{M_{\nu_R}} < 3 \text{ meV},$$

if $m_{\nu_D} \le m_t = 170 \text{ GeV}, \ M_{\nu_R} \simeq M_X \ge 10^{16} \text{ GeV}!$

• Need $m_{\nu_3} > 50 \text{ meV}!$

- SO(10) has rank 5
- Usually need several Higgs reps to break it to SM gauge group
- No reason why the corresponding vevs should be the same
- See—saw:

$$m_{\nu} = \frac{m_{\nu_D}^2}{M_{\nu_R}} < 3 \text{ meV} \,,$$

if $m_{\nu_D} \le m_t = 170 \text{ GeV}, \ M_{\nu_R} \simeq M_X \ge 10^{16} \text{ GeV}!$

- Need $m_{\nu_3} > 50 \text{ meV!}$
- \implies need $M_{\nu_R} \leq 5 \cdot 10^{14} \text{ GeV}!$

The model

Ref: al. et Senjanovic, Nucl. Phys B597 (2001) 89

 $SO(10) \longrightarrow SU(4) \otimes SU(2)_L \otimes SU(2)_R \otimes D \text{ at } M_X \text{ using } \underline{54}$ $\longrightarrow SU(3)_C \otimes U(1)_{B-L} \otimes SU(2)_L \otimes SU(2)_R \text{ at } M_C \text{ using } \underline{45}$ $\longrightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \text{ at } M_R \text{ using } \underline{126}, \underline{126}$

D: Discrete symmetry, ensures parity (same L and R couplings)

Higgs fields

Most general renormalizable superpotential $\implies \exists$ "light" Higgs states:

Higgs fields

Most general renormalizable superpotential $\implies \exists$ "light" Higgs states:

- 54 = $(1,1,1) \oplus (20,1,1) \oplus (1,3,3) \oplus (6,2,2);$
- 45 = $(15, 1, 1) \oplus (1, 1, 3) \oplus (1, 3, 1) \oplus (6, 2, 2);$
- $\overline{126} = (10, 1, 3) \oplus (\overline{10}, 3, 1) \oplus (15, 2, 2) \oplus (6, 1, 1);$
- 126 = $(\overline{10}, 1, 3) \oplus (10, 3, 1) \oplus (15, 2, 2) \oplus (6, 1, 1)$.

Decomposition under $SU(4) \otimes SU(2)_L \otimes SU(2)_R$; components obtaining vev are written first.

Higgs spectrum

State	Mass
all of <u>54</u>	
all of <u>45</u> , except $(15, 1, 1)_{45}$	M_X
all of <u>126</u> and <u>126</u> , except <u>10</u> , <u>10</u> of $SU(4)$	
$(\overline{10},3,1)_{\overline{126}}$ and $(10,3,1)_{126}$	
$\underline{3}, \underline{6} \text{ of } SU(3)_C \text{ in } (10, 1, 3)_{\overline{126}} \text{ and } (\overline{10}, 1, 3)_{126}$	M_C
color triplets of $(15, 1, 1)_{45}$	
$(\delta^0 - \overline{\delta}^0), \delta^+, \overline{\delta}^-$	M_R
color octet and singlet of $(15, 1, 1)_A$	$\tilde{M}_1 \equiv \max\left[\frac{M_R^2}{M_C}, \frac{M_C^2}{M_X}\right]$
$(\delta^0 + \overline{\delta}^0), \delta^{++}, \overline{\delta}^{}$	$\tilde{M}_2 \equiv M_R^2/M_X$

$$-\delta = (1, 1, 3)_{126}; \, \overline{\delta} = (1, 1, 3)_{\overline{126}}$$

• Existence of states with mass $< M_R$ is crucial for allowing intermediate scales, given that single-step unification works.

- Existence of states with mass $< M_R$ is crucial for allowing intermediate scales, given that single-step unification works.
- From RGE: Can compute M_C and M_R for given M_X
 (and given weak-scale parameters): No prediction for M_X or ratios of weak-scale couplings.

- Existence of states with mass $< M_R$ is crucial for allowing intermediate scales, given that single-step unification works.
- From RGE: Can compute M_C and M_R for given M_X (and given weak–scale parameters): No prediction for M_X or ratios of weak–scale couplings.
- In particular, $M_X = M_C = M_R$ remains possible: allows smooth transition to "Grand Desert"

- Existence of states with mass $< M_R$ is crucial for allowing intermediate scales, given that single-step unification works.
- From RGE: Can compute M_C and M_R for given M_X (and given weak–scale parameters): No prediction for M_X or ratios of weak–scale couplings.
- In particular, $M_X = M_C = M_R$ remains possible: allows smooth transition to "Grand Desert"
- Introduce second pair of $\underline{10}$, $\overline{\underline{10}}$ with mass M_2 , to allow more realistic fermion masses (see below).

Relation between scales

Superpotential above M_C

$$W = Y_1 F^c F \Phi_1 + \frac{1}{2} Y_N \left(F^c \bar{\Sigma}_R F^c + F \bar{\Sigma}_L F \right)$$

F = (4, 2, 1): left-handed matter fields $F^{c} = (\bar{4}, 1, 2)$: right-handed matter fields $\Phi_{1,2} = (1, 2, 2)$: Higgs bi-doublets $\bar{\Sigma}_{R} = (10, 1, 3) \text{ of } \underline{126}$ $\bar{\Sigma}_{L} = (\overline{10}, 3, 1) \text{ of } \underline{\overline{126}}$

Superpotential above M_C

$$W = Y_1 F^c F \Phi_1 + \frac{1}{2} Y_N \left(F^c \bar{\Sigma}_R F^c + F \bar{\Sigma}_L F \right)$$

F = (4, 2, 1): left-handed matter fields $F^{c} = (\bar{4}, 1, 2)$: right-handed matter fields $\Phi_{1,2} = (1, 2, 2)$: Higgs bi-doublets $\bar{\Sigma}_{R} = (10, 1, 3) \text{ of } \underline{126}$ $\bar{\Sigma}_{L} = (\overline{10}, 3, 1) \text{ of } \underline{\overline{126}}$

Have set coupling Y_2 of Φ_2 to zero: can always be done via field re-definition

Superpotential above M_C

$$W = Y_1 F^c F \Phi_1 + \frac{1}{2} Y_N \left(F^c \bar{\Sigma}_R F^c + F \bar{\Sigma}_L F \right)$$

F = (4, 2, 1): left-handed matter fields $F^{c} = (\bar{4}, 1, 2)$: right-handed matter fields $\Phi_{1,2} = (1, 2, 2)$: Higgs bi-doublets $\bar{\Sigma}_{R} = (10, 1, 3) \text{ of } \underline{126}$ $\bar{\Sigma}_{L} = (\overline{10}, 3, 1) \text{ of } \underline{\overline{126}}$

Have set coupling Y_2 of Φ_2 to zero: can always be done via field re-definition

 Y_N generates ν_R mass!

Superpotential between M_R and M_C

$$W = Y_{q_1}Q^{c}Q\Phi_1 + Y_{l_1}L^{c}L\Phi_1 + \frac{1}{2}Y_NL^{c}\bar{\delta}L^{c}$$

 $Q^c = (\bar{3}, 1, 2, -1/3)$: right-handed quarks Q = (3, 2, 1, 1/3): left-handed quarks $L^c = (1, 1, 2, 1)$: right-handed leptons L = (1, 2, 1, -1): left-handed leptons $\bar{\delta} = (1, 1, 3, -2)$: breaks $SU(2)_R \otimes U(1)_{B-L} \rightarrow U(1)_Y$.

Superpotential between M_R and M_C

$$W = Y_{q_1}Q^{c}Q\Phi_1 + Y_{l_1}L^{c}L\Phi_1 + \frac{1}{2}Y_NL^{c}\bar{\delta}L^{c}$$

 $Q^c = (\overline{3}, 1, 2, -1/3)$: right-handed quarks Q = (3, 2, 1, 1/3): left-handed quarks $L^c = (1, 1, 2, 1)$: right-handed leptons L = (1, 2, 1, -1): left-handed leptons $\overline{\delta} = (1, 1, 3, -2)$: breaks $SU(2)_R \otimes U(1)_{B-L} \rightarrow U(1)_Y$.

Matching condition at $E = M_C$:

$$Y_{q_1} = Y_{l_1} = Y_1$$

Superpotential between M_R and \tilde{M}_2

 $W = Y_{u_1}U^c Q H_{u_1} + Y_{d_1}D^c Q H_{d_1} + Y_{l_1}E^c L H_{d_1} + \frac{1}{2}Y_N E^c \bar{\delta}^{--}E^c$

Superpotential between M_R and M_2

 $W = Y_{u_1}U^c Q H_{u_1} + Y_{d_1}D^c Q H_{d_1} + Y_{l_1}E^c L H_{d_1} + \frac{1}{2}Y_N E^c \bar{\delta}^{--}E^c$

Matching condition at $E = M_R$:

$$Y_{u_1} = Y_{d_1} = Y_{q_1}$$

Superpotential below \tilde{M}_2

As in MSSM:

$W = Y_u U^c Q H_u + Y_d D^c H_d + Y_l E^c L H_d$

Superpotential below \tilde{M}_2

As in MSSM:

$W = Y_u U^c Q H_u + Y_d D^c H_d + Y_l E^c L H_d$

Matching:

 $H_{u,d} = \cos \varphi_{u,d} H_{(u,d)_1} + \sin \varphi_{u,d} H_{(u,d)_2} \Longrightarrow Y_{u,d} = Y_{(u,d)_1} \cos \varphi_{u,d}$
Superpotential below \tilde{M}_2

As in MSSM:

$W = Y_u U^c Q H_u + Y_d D^c H_d + Y_l E^c L H_d$

Matching:

 $H_{u,d} = \cos \varphi_{u,d} H_{(u,d)_1} + \sin \varphi_{u,d} H_{(u,d)_2} \Longrightarrow Y_{u,d} = Y_{(u,d)_1} \cos \varphi_{u,d}$

 \implies need $\cos \varphi_u \simeq 1$, since Y_t already near maximal

Superpotential below \tilde{M}_2

As in MSSM:

$W = Y_u U^c Q H_u + Y_d D^c H_d + Y_l E^c L H_d$

Matching:

$$H_{u,d} = \cos \varphi_{u,d} H_{(u,d)_1} + \sin \varphi_{u,d} H_{(u,d)_2} \Longrightarrow Y_{u,d} = Y_{(u,d)_1} \cos \varphi_{u,d}$$

 \implies need $\cos \varphi_u \simeq 1$, since Y_t already near maximal

$$\implies \cos \varphi_d = \frac{Y_d(M_2)}{Y_u(M_R)} \left[\frac{g_1^2(M_R)}{g_1^2(M_2)} \right]^{1/60}$$

 $\implies Y_{d_1} \simeq Y_{u,1}$: always in "large $\tan \beta$ " scenario for $E \ge \tilde{M}_2$!

Assume unified boundary conditions: scalar mass m_0 , gaugino mass $M_{1/2}$, single parameter A_0 .

Assume unified boundary conditions: scalar mass m_0 , gaugino mass $M_{1/2}$, single parameter A_0 .

Gauge β -functions increase for $E > \tilde{M}_2$

 \implies ratios $M_i/M_{1/2}$ decrease (M_i , i = 1, 2, 3: weak-scale gaugino masses)

Assume unified boundary conditions: scalar mass m_0 , gaugino mass $M_{1/2}$, single parameter A_0 .

Gauge β -functions increase for $E > \tilde{M}_2$

 \implies ratios $M_i/M_{1/2}$ decrease (M_i , i = 1, 2, 3: weak-scale gaugino masses)

E.g. for $M_X = 3 \cdot 10^{15}$ GeV (minimal value): $M_1 = 0.23 M_{1/2}$ $M_2 = 0.46 M_{1/2}$ $M_3 = 1.4 M_{1/2}$

Coefficients nearly two times smaller than in mSUGRA.

Assume unified boundary conditions: scalar mass m_0 , gaugino mass $M_{1/2}$, single parameter A_0 .

Gauge β -functions increase for $E > \tilde{M}_2$

 \implies ratios $M_i/M_{1/2}$ decrease (M_i , i = 1, 2, 3: weak-scale gaugino masses)

E.g. for $M_X = 3 \cdot 10^{15}$ GeV (minimal value): $M_1 = 0.23 M_{1/2}$ $M_2 = 0.46 M_{1/2}$

$$M_3 = 1.4 M_{1/2}$$

Coefficients nearly two times smaller than in mSUGRA.

Ratios $M_1 : M_2 : M_3$ same as in mSUGRA!

Sfermion masses (1st generation)

For fixed M_i , get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of $M_{1/2}$:

Sfermion masses (1st generation)

For fixed M_i , get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of $M_{1/2}$:

$$m_{\tilde{f}}^2(M_{\rm SUSY}) = m_0^2 + c_{\tilde{f}}M_{1/2}^2$$

 $c_{\tilde{e}_R} = 0.15$ (as in mSUGRA); $c_{\tilde{e}_L} = 0.21$ (smaller than in mSUGRA); $c_{\tilde{q}} = 1.15$ (smaller than in mSUGRA).

Sfermion masses (1st generation)

For fixed M_i , get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of $M_{1/2}$:

$$m_{\tilde{f}}^2(M_{\rm SUSY}) = m_0^2 + c_{\tilde{f}}M_{1/2}^2$$

 $c_{\tilde{e}_R} = 0.15$ (as in mSUGRA); $c_{\tilde{e}_L} = 0.21$ (smaller than in mSUGRA); $c_{\tilde{q}} = 1.15$ (smaller than in mSUGRA).

 $m_{\tilde{e}_R} \ge 1.68 |M_1|$: No co–annihilation of $\tilde{\chi}_1^0$ with \tilde{e}_R , $\tilde{\mu}_R$! $m_{\tilde{e}_L} \ge |M_2|$: No $\widetilde{W} \to \tilde{\ell}_L$ decays! $m_{\tilde{q}} \ge 0.75 m_{\tilde{g}}$: Similar to mSUGRA

 Y_N reduces $m_{\tilde{\tau}_{L,R}}, m_{\tilde{t}_{L,R}}, m_{\tilde{b}_R}$

 Y_N reduces $m_{\tilde{\tau}_{L,R}}, m_{\tilde{t}_{L,R}}, m_{\tilde{b}_R}$

 \implies increases $m_{H_u}^2(M_{\text{SUSY}})$ (and hence m_A)

 Y_N reduces $m_{\tilde{\tau}_{L,R}}, m_{\tilde{t}_{L,R}}, m_{\tilde{b}_R}$

 \implies increases $m_{H_u}^2(M_{\text{SUSY}})$ (and hence m_A)

 \implies reduces $|\mu(M_{SUSY})|$ via EWSB condition

 Y_N reduces $m_{\tilde{\tau}_{L,R}}, m_{\tilde{t}_{L,R}}, m_{\tilde{b}_R}$ \implies increases $m_{H_u}^2(M_{\text{SUSY}})$ (and hence m_A) \implies reduces $|\mu(M_{\text{SUSY}})|$ via EWSB condition $m_{\nu_3} \propto \frac{m_t^2}{Y_N M_R} \implies$ smaller m_{ν_3} implies larger Y_N !

Effect on the spectrum

Survey of parameter space

Grey: no ESWB or tachyonic sfermion; red: mass bounds; pink: $b \rightarrow s\gamma$ excluded; blue: favored by g_{μ} ; green: DM allowed; black: all ok

Survey of parameter space

Grey: no ESWB or tachyonic sfermion; red: mass bounds; pink: $b \rightarrow s\gamma$ excluded; blue: favored by g_{μ} ; green: DM allowed; black: all ok In mSUGRA: don't find allowed region (DM & g_{μ}) with $-m_0^2 \gg M_{1/2}^2$!

Same for $\tan \beta = 50$

Same for $\tan \beta = 50$

In right frame, DM relic density too small everywhere

Same for $\tan \beta = 50$

In right frame, DM relic density too small everywhere

~ 50% of plane DM–allowed for $\tan \beta = 49!$

Impact on DM searches

For $m_0 \gg M_{1/2}$: ("focus point", but no focussing in this scenario!) Very similar to mSUGRA, if $m_{\tilde{\chi}_1^0}$, $\Omega_{\tilde{\chi}_1^0}$ are fixed.

Impact on DM searches

For $m_0 \gg M_{1/2}$: ("focus point", but no focussing in this scenario!) Very similar to mSUGRA, if $m_{\tilde{\chi}_1^0}$, $\Omega_{\tilde{\chi}_1^0}$ are fixed.

 $\tilde{\tau}_1$ co–annihilation region: More promising, due to reduced $|\mu|$

- \implies more higgsino-gaugino mixing
- \implies enhanced couplings of $\tilde{\chi}_1^0$ to Higgs bosons and Z^0 !

Impact on DM searches

For $m_0 \gg M_{1/2}$: ("focus point", but no focussing in this scenario!) Very similar to mSUGRA, if $m_{\tilde{\chi}_1^0}$, $\Omega_{\tilde{\chi}_1^0}$ are fixed.

 $\tilde{\tau}_1$ co–annihilation region: More promising, due to reduced $|\mu|$

- \implies more higgsino-gaugino mixing
- \implies enhanced couplings of $\tilde{\chi}_1^0$ to Higgs bosons and Z^0 !

In SO(10) model: can get large bino-higgsino mixing for relatively modest m_0 , where \tilde{q} can be produced at LHC. This is not possible in mSUGRA.

In SO(10) model: can get large bino-higgsino mixing for relatively modest m_0 , where \tilde{q} can be produced at LHC. This is not possible in mSUGRA.

To get correct DM density in mSUGRA for same $m_{\tilde{q}}$, $m_{\tilde{g}}$: have to increase $\tan \beta$ quite a lot (to reach "A-funnel")

In SO(10) model: can get large bino-higgsino mixing for relatively modest m_0 , where \tilde{q} can be produced at LHC. This is not possible in mSUGRA.

To get correct DM density in mSUGRA for same $m_{\tilde{q}}$, $m_{\tilde{g}}$: have to increase $\tan \beta$ quite a lot (to reach "A-funnel")

 \implies mSUGRA has much smaller heavy Higgs masses: can be detected in $\tau^+\tau^-$ channel!

In SO(10) model: can get large bino-higgsino mixing for relatively modest m_0 , where \tilde{q} can be produced at LHC. This is not possible in mSUGRA.

To get correct DM density in mSUGRA for same $m_{\tilde{q}}$, $m_{\tilde{g}}$: have to increase $\tan \beta$ quite a lot (to reach "A-funnel")

 \implies mSUGRA has much smaller heavy Higgs masses: can be detected in $\tau^+\tau^-$ channel!

mSUGRA has much larger $|\mu|$:changes $\tilde{\chi}^0$, $\tilde{\chi}^{\pm}$ spectrum; can be checked via $\ell^+\ell^-$ invariant mass distribution!

 $M_{\ell^+\ell^-}$ distribution ($m_0 \gg M_{1/2}$)

spectrum

In mSUGRA: either slightly change A_0 (option a) or slightly increase $\tan \beta$ (option b) to match $\Omega_{\tilde{\chi}_1^0}$ for fixed $m_{\tilde{q}}, m_{\tilde{g}}$.

In mSUGRA: either slightly change A_0 (option a) or slightly increase $\tan \beta$ (option b) to match $\Omega_{\tilde{\chi}_1^0}$ for fixed $m_{\tilde{q}}, m_{\tilde{g}}$. In SO(10): smaller $m_{\tilde{t}_{1,2}, m_{\tilde{b}_1}}$

In mSUGRA: either slightly change A_0 (option a) or slightly increase $\tan \beta$ (option b) to match $\Omega_{\tilde{\chi}_1^0}$ for fixed $m_{\tilde{q}}, m_{\tilde{g}}$. In SO(10): smaller $m_{\tilde{t}_{1,2}, m_{\tilde{b}_1}}$

Smaller $|\mu| \Longrightarrow$ smaller $m_{\tilde{\chi}_{3,4}^0}, \ m_{\tilde{\chi}_2^\pm}$

In mSUGRA: either slightly change A_0 (option a) or slightly increase $\tan \beta$ (option b) to match $\Omega_{\tilde{\chi}_1^0}$ for fixed $m_{\tilde{q}}, m_{\tilde{g}}$. In SO(10): smaller $m_{\tilde{t}_{1,2}, m_{\tilde{b}_1}}$

Smaller $|\mu| \Longrightarrow$ smaller $m_{\tilde{\chi}_{3,4}^0}, \ m_{\tilde{\chi}_2^\pm}$ \Longrightarrow more $\tilde{g} \to \tilde{\chi}_{3,4}^0, \ \tilde{\chi}_2^\pm$ decays

In mSUGRA: either slightly change A_0 (option a) or slightly increase $\tan \beta$ (option b) to match $\Omega_{\tilde{\chi}_1^0}$ for fixed $m_{\tilde{q}}, m_{\tilde{g}}$. In SO(10): smaller $m_{\tilde{t}_{1,2}, m_{\tilde{b}_1}}$

Smaller $|\mu| \Longrightarrow$ smaller $m_{\tilde{\chi}_{3,4}^0}, m_{\tilde{\chi}_2^{\pm}}$ \Longrightarrow more $\tilde{g} \to \tilde{\chi}_{3,4}^0, \tilde{\chi}_2^{\pm}$ decays \Longrightarrow more $\tilde{g} \to Z^0$ on–shell in SO(10)!

Subtracted $M_{\ell^+\ell^-}$ distribution ($m_0 \ll M_{1/2}$

SO(10) has significantly more pronounced Z^0 peak

Subtracted $M_{\ell^+\ell^-}$ distribution ($m_0 \ll M_{1/2}$

SO(10) has significantly more pronounced Z^0 peak

SO(10) model also has more like-sign di-lepton events: 492 vs. 422 (434).

• SO(10) model natural if $\exists \nu_R$ state!

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see—saw.

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see-saw.
- This modifies the RG running below M_X .

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see-saw.
- This modifies the RG running below M_X .
- For fixed boundary condition at M_X : reduced $|\mu|$ tends to make DM detection easier!

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see-saw.
- This modifies the RG running below M_X .
- For fixed boundary condition at M_X : reduced $|\mu|$ tends to make DM detection easier!
- Points with same $m_{\tilde{q}}, m_{\tilde{g}}, m_{\tilde{\chi}_1^0}, \Omega_{\tilde{\chi}_1^0}$ can be distinguished at LHC, using di–lepton events and heavy Higgs searches

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see-saw.
- This modifies the RG running below M_X .
- For fixed boundary condition at M_X : reduced $|\mu|$ tends to make DM detection easier!
- Points with same $m_{\tilde{q}}, m_{\tilde{g}}, m_{\tilde{\chi}_1^0}, \Omega_{\tilde{\chi}_1^0}$ can be distinguished at LHC, using di–lepton events and heavy Higgs searches
- Results should be qualitatively same in other models where $M_R < M_X$.

- SO(10) model natural if $\exists \nu_R$ state!
- Allows intermediate scale; required for see—saw.
- This modifies the RG running below M_X .
- For fixed boundary condition at M_X : reduced $|\mu|$ tends to make DM detection easier!
- Points with same $m_{\tilde{q}}, m_{\tilde{g}}, m_{\tilde{\chi}_1^0}, \Omega_{\tilde{\chi}_1^0}$ can be distinguished at LHC, using di–lepton events and heavy Higgs searches
- Results should be qualitatively same in other models where $M_R < M_X$.
- To fix high–scale physics: need to know m_{ν} , proton lifetime!