Significant effects of second KK particles on LKP dark matter physics

Mitsuru Kakizaki (Bonn Univ. & ICRR, Univ. of Tokyo)

30 March, 2006 @ Dortmund Univ.

Collaborated with

- Shigeki Matsumoto (KEK)
- Yoshio Sato (Saitama U.)
- Masato Senami (ICRR)

Refs:

- PRD 71 (2005) 123522 [hep-ph/0502059]
- NPB 735 (2006) 84 [hep-ph/0508283]

What is the constituent of dark matter?

- Weakly interacting massive particles are good candidates:
 - Lightest supersymmetric particle (LSP) in supersymmetric (SUSY) models
 - Lightest Kaluza-Klein particle (LKP) in universal extra dimension models

• etc.

30 March, 2006

- In universal extra dimension (UED) models, Kaluza-Klein (KK) dark matter physics is drastically affected by second KK particles
- Reevaluation of relic density of KK dark matter including coannihilation and resonance effects
 Dark matter particle mass consistent with WMAP increases
- **1**. Motivation
- 2. Universal extra dimension (UED) models
- **3.** Relic abundance of KK dark matter

Outline

- 4. Resonance in KK dark matter annihilation
- **5.** Summary

2. Universal extra dimension (UED) models

[Appelquist, Cheng, Dobrescu, PRD64 (2001) 035002]

Macroscopic

Microscopic

 $M^4 \times S_1$

 M^4

Idea: All SM particles propagate flat compact spatial extra dimensions

• **Dispersion relation:**
$$E^2 = \vec{p}^2 + (p_5^2 + M^2)$$

→ Momentum along the extra dimension
→ Mass in four-dimensional viewpoint

In case of S^1 compactification with radius R, $p_5 = n/R$ $(n = 0, 1, 2, \cdots)$ is quantized

 \bullet Momentum conservation in the extra dimension \implies Conservation of KK number n in each vertex

30 March, 2006

Mitsuru Kakizaki

Magnify

More

theory

fundamental

 m_Z

- In order to obtain chiral fermions at zeroth KK level, the extra dimension is compactified on an S^1/Z_2 orbifold
- Conservation of KK parity [+ (–) for even (odd) \boldsymbol{n}]

The lightest KK particle (LKP) is stable c.f. R-parity and LSP

The LKP is a good candidate for dark matter

• Only two new parameters in the MUED model:

R : Size of extra dimension Λ : Scale at which boundary terms vanish

Constraints from electroweak measurements are weak:

 $R^{-1} > 250 \text{ GeV}$ [Appelquist, Cheng, Dobrescu (2001); Appelquist, Yee, PRD67 (2003)] $R^{-1} > 700 \text{ GeV}$: Inclusion of 2-loop SM contributions and LEP2 data [Flacke, Hooper, March-Russel, hep-ph/0509352 (2005)] 30 March, 2006 Mitsuru Kakizaki 5

Mass spectra of KK states

30 March, 2006

3. Relic abundance of KK dark matter

Generic picture

- Dark matter was at thermal equilibrium in the early universe
- After the annihilation rate dropped below the expansion rate,

the number density per comoving volume is almost fixed

- Dark matter particles are non-relativistic when they decouple (Incident energy of two LKPs) \simeq (Masses of 2nd KK modes)
- LKPs annihilate through s-channel 2nd KK Higgs boson exchange at loop level

• Mass splitting in MUED:

The annihilation cross section is enhanced

30 March, 2006

Thermal average of annihilation cross section for LKP

Smaller δ

The averaged cross section becomes maximum at later time and has larger maximum value

30 March, 2006

Relic abundance of LKP (without coannihilation)

in calculation of the relic density of the LKP dark matter

Coannihilation with NLKP $E^{(1)}$

We can systematically survey 2nd KK–resonance effects

- $h^{(2)}$ -resonance in $\gamma^{(1)}\gamma^{(1)} \to SM$ particles : sizable
- $E^{(2)}$ -resonance in $B^{(1)}E^{(1)} \rightarrow SM$ particles : relatively small
- No 2nd KK–resonance in $E^{(1)}\bar{E}^{(1)} \rightarrow SM$ particles

• Evolution of dark matter abundance Y = n/s [Three flavors: $E_i^{(1)}$, $i = e, \mu, \tau$]

30 March, 2006

Allowed mass region $0.104 \le \Omega h^2 \le 0.116$ $0.098 \le \Omega h^2 \le 0.122$

6. Summary

 UED models provide a viable dark matter candidate: The lightest Kaluza-Klein particle (LKP)

• (Masses of 2nd KK particles) $\simeq 2 imes$ (Masses of 1st KK particles)

> Annihilation takes place near poles

• We evaluated the relic abundance of the LKP dark matter including resonance and coannihilation (with the NLKPs)

• The LKP mass consistent with WMAP data is sizably raised due to 2nd KK—resonance in dark matter annihilation