Abundance of Thermal WIMPs in Non-standard Cosmological Scenarios

Mitsuru Kakizaki (Bonn Univ.)

September 27, 2007

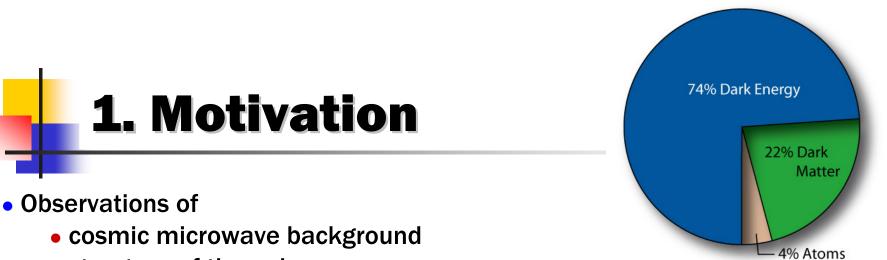
First Annual School of EU Network "UniverseNet" – The Origin of the Universe

In collaboration with

- Manuel Drees (Bonn Univ.)
- Hoernisa Iminniyaz (Univ. of Xinjiang)

Refs:

- PRD73 (2006) 123502 [hep-ph/0603165]
- arXiv:0704.1590 [hep-ph], to appear in PRD



- structure of the universe
- etc.

[http://map.gsfc.nasa.gov]

Non-baryonic dark matter: $0.08 < \Omega_{\rm DM} h^2 < 0.12$

• Weakly interacting massive particles (WIMPs) $\,\chi\,$ are good candidates for cold dark matter (CDM)

The predicted thermal relic abundance naturally explains the observed dark matter abundance: $\Omega_{\chi, \text{standard}} h^2 \sim 0.1$

Neutralino (LSP); 1st KK mode of the B boson (LKP); etc.

September 27, 2007

Investigation of early universe using CDM abundance

• The relic abundance of thermal WIMPs is determined by the Boltzmann equation: $\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma_{\rm eff} v \rangle (n_{\chi}^2 - n_{\chi,{\rm eq}}^2)$

(and the reheat temperature: T_R)

 \bullet The (effective) cross section σ_{eff} can be (hopefully) determined from collider and DM detection experiments

We can test the standard CDM scenario and investigate conditions of very early universe: T_R, H, \cdots

• Standard scenario or non-standard scenarios?

[Scherrer; Salati; Rosati; Profumo, Ullio; Pallis; Maisero, Pietroni, Rosati; ...]

Outline

- We provide an approximate analytic treatment that is applicable to low-reheat-temperature scenarios
- Based on the assumption that dark matter is made of thermal WIMPs,
 - we derive the lower bound on the reheating temperature
 - we constrain possible modifications of the Hubble parameter

c.f. Cosmic $p^+, \gamma \Longrightarrow$ Bounds on pre-BBN expansion

[Schelke, Catena, Fornengo, Masiero, Pietroni PRD74 (2006); Donato, Fornengo, Schelke, JCAP0703 (2007)]

- **1**. Motivation
- 2. Standard calculation of WIMP relic abundance
- **3.** Low-temperature scenario
- 4. Constraints on the very early universe from WIMP dark matter
- 5. Summary

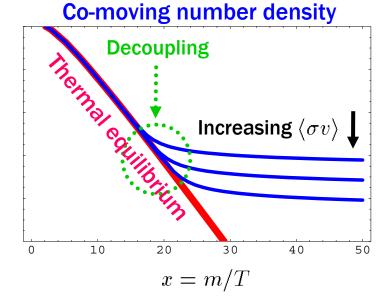
September 27, 2007

2. Standard calculation of the WIMP relic abundance

[Scherrer, Turner, PRD33(1986); Griest, Seckel, PRD43(1991); ...]

- Conventional assumptions:
 - $\chi=\bar{\chi}$, single production of χ is forbidden
 - Thermal equilibrium was maintained: $T_R(\text{Reheat temp}) \ge T_F(\text{Freezeout temp})$
- For adiabatic expansion the Boltzmann eq. is

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = -\frac{\langle \sigma v \rangle s}{Hx} (Y_{\chi}^2 - Y_{\chi,\mathrm{eq}}^2),$$
$$Y_{\chi(\mathrm{,eq})} = \frac{n_{\chi(\mathrm{,eq})}}{s}, x = \frac{m_{\chi}}{T}$$



• χ decoupled when they were non-relativistic in RD epoch:

$$\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2), \quad n_{\chi, eq} = g_{\chi} \left(m_{\chi} T/2\pi \right)^{3/2} e^{-m_{\chi}/T}$$

$$\sum \Omega_{\chi, \text{standard}} h^2 \simeq 0.1 \times \left(\frac{a + 3b/x_F}{10^{-9} \text{ GeV}^{-2}} \right)^{-1} \left(\frac{x_F}{22} \right) \left(\frac{g_*}{90} \right)^{-1/2} \sim \Omega_{\text{DM}} h^2$$

September 27, 2007

3. Low-temperature scenario

• Assumptions: $T_R \leq T_F; \; Y_\chi(x_0) = 0 \;, \; x_0 = m_\chi/T_R$

• Zeroth order approximation: For $T_R \ll T_F$, χ annihilation is negligible:

$$\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x} x \left(a + \frac{6b}{x}\right)$$

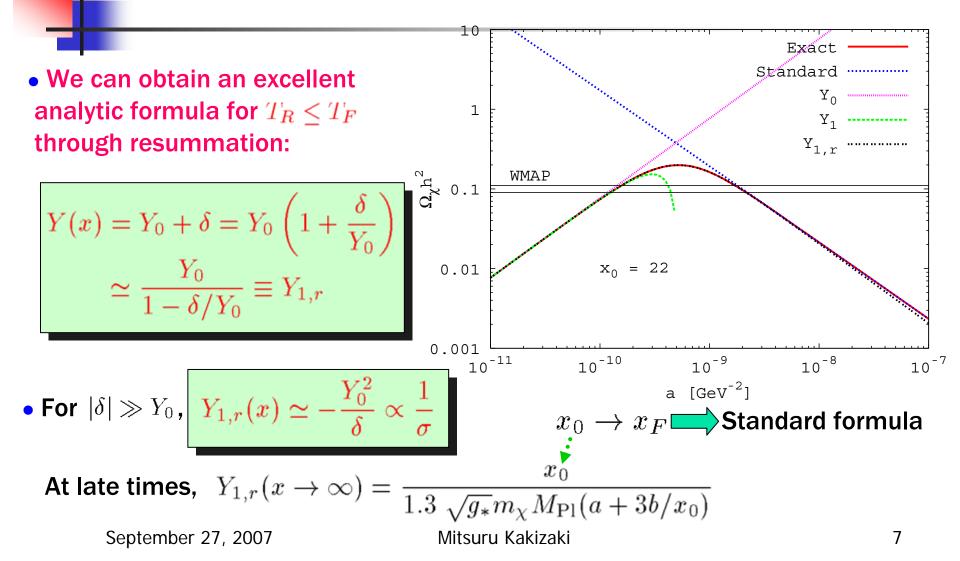
The solution Y_0 is proportional to the cross section:

- First order approximation:
 - Add a correction term describing annihilation to Y_0 : $Y_1 = Y_0 + \delta ~(\delta < 0)$
 - As long as $|\delta| \ll Y_0$, the evolution equation for $|\delta|$ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_{\chi} M_{\rm Pl} \left(a + \frac{6b}{x}\right) \frac{Y_0(x)^2}{x^2}$$

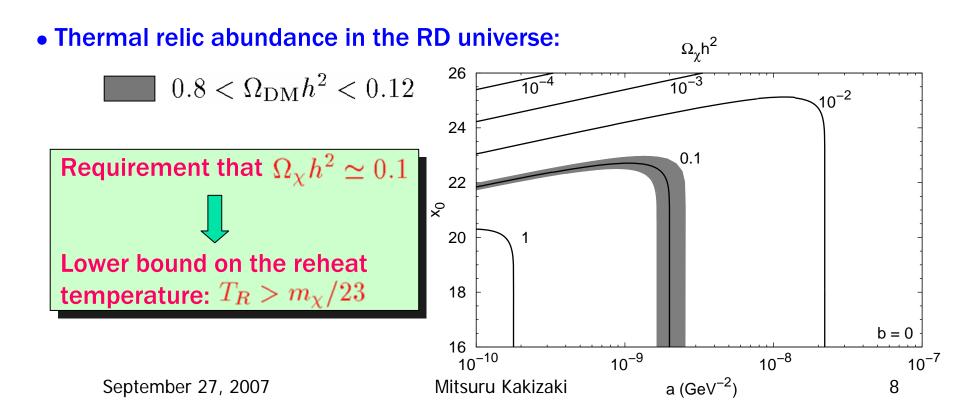
An analytic expression for δ can be obtained and is proportional to σ^3 September 27, 2007Mitsuru Kakizaki6

Resummed ansatz



4. Constraints on the very early universe from WIMP DM

• Out-of-equilibrium case: $\sigma \land \Rightarrow \Omega h^2 \land$; $T_0 = m_{\chi}/x_0 \land \Rightarrow \Omega h^2 \land$ Equilibrium case: $\sigma \land \Rightarrow \Omega h^2 \land$; $\Omega_{\chi} h^2$ is independent of T_R



Modified expansion rate

Various cosmological models predict a non-standard early expansion
 Predicted WIMP relic abundances are also changed

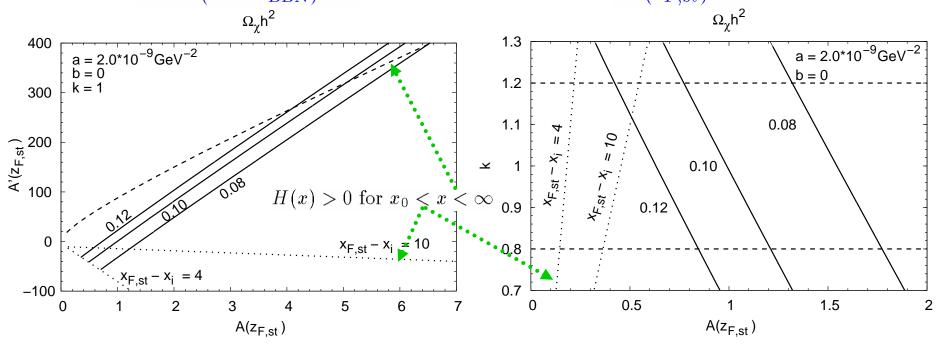
• Idea:

Once we know σ as well as $\,\Omega_{\rm DM}h^2$, we can constrain the expansion rate at around WIMP decoupling within the framework of thermal WIMP production

- Parametrization: $A(z) = H_{st}(z)/H(z)$, $z \equiv T/m_{\chi} = 1/x$
- We need to know A(z) only for $z_{BBN} = 10^{-5} 10^{-4} \le z \le z_F \sim 1/20 \ll \mathcal{O}(1)$ Taylor expansion of A(z) in powers of $(z - z_{F,st})$: $A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + \frac{1}{2}(z - z_{F,st})^2 A''(z_{F,st})$ subject to the BBN limit: $0.8 \le k \equiv A(z \rightarrow z_{BBN}) \le 1.2$

September 27, 2007

Constraints on modifications of the Hubble parameter • Case for $k \equiv A(z \rightarrow z_{BBN}) = 1$ • Case for $A''(z_{F,st}) = 0$

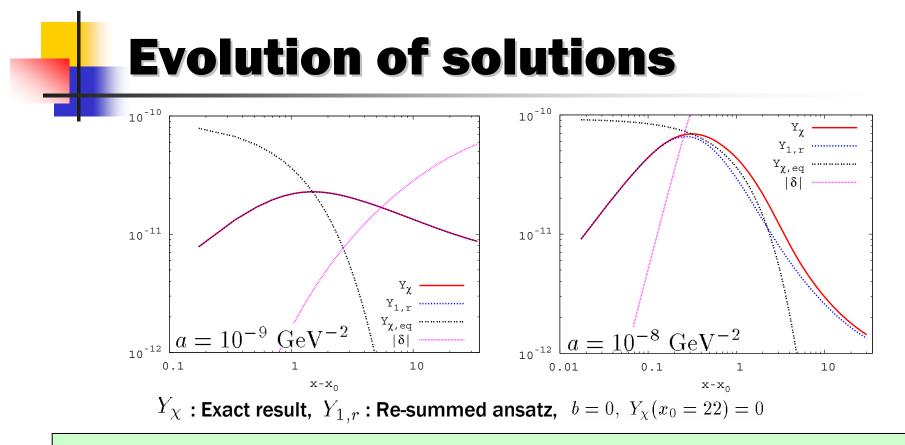


 x_i : Maximal temperature where our expansion is valid

 h^2 depends on all $H(T_{\rm BBN} < T < T_F)$ \implies Weaker constraints on $H(T_F)$

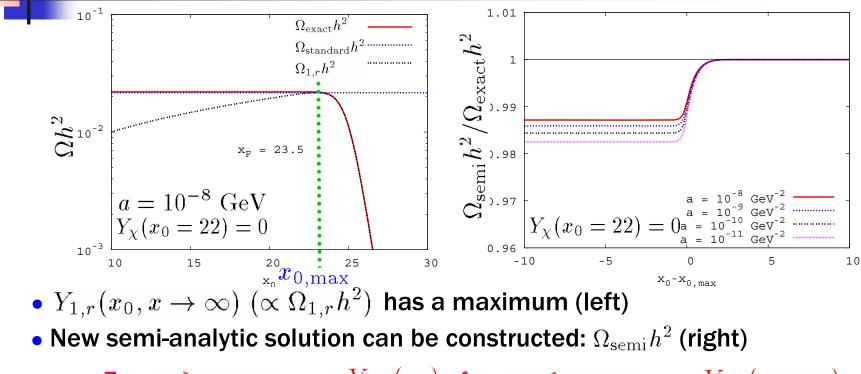
- Using the CDM relic density we can examine very early universe at around $T \sim m_{\chi}/20 \sim O(10) \text{ GeV}$ (well before BBN $T_{\text{BBN}} \sim O(1) \text{ MeV}$)
- We find an approximate analytic formula that is valid for all $T_R \leq T_F$
- By requiring $\Omega_{\chi,\rm thermal}h^2 = \Omega_{\rm DM}h^2$, we found the lower bound on the reheat temperature: $T_R > m_\chi/23$
- The sensitivity of $\Omega_{\chi, {\rm thermal}} h^2$ on $H(T_F)$ is weak because $\Omega_{\chi, {\rm thermal}} h^2$ depends on all $H(T_{\rm BBN} < T < T_F)$

September 27, 2007



- The re-summed ansatz $Y_{1,r}$ describes the full temperature dependence of the abundance when equilibrium is not reached
- For larger cross section the deviation becomes sizable for $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

Semi-analytic solution



• $Y_{1,r}(x_0, x \to \infty) \ (\propto \Omega_{1,r} h^2)$ has a maximum (left)

• New semi-analytic solution can be constructed: $\Omega_{\text{semi}}h^2$ (right)

For $x_0 > x_{0,\max}$, use $Y_{1,r}(x_0)$; for $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi-analytic solution $\Omega_{\rm semi}h^2$ reproduces the correct final relic density $\Omega_{exact}h^2$ to an accuracy of a few percent