Abundance of Thermal WIMPs in Non-standard Cosmological Scenarios

Mitsuru Kakizaki (Bonn Univ.)

May 21, 2008

PLANCK 08 @ Barcelona

In collaboration with

- Manuel Drees (Bonn Univ.)
- Hoernisa Iminniyaz (Univ. of Xinjiang)

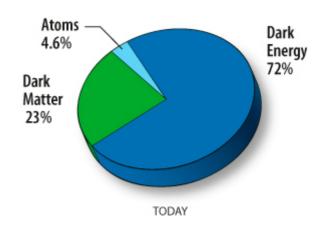
Refs:

- PRD73, 123502 (2006) [hep-ph/0603165]
- PRD76, 103524 (2007) [arXiv:0704.1590 [hep-ph]]



1. Motivation

- Observations of
 - cosmic microwave background
 - structure of the universe
 - etc.



[http://map.gsfc.nasa.gov]

Non-baryonic cold dark matter: $\Omega_{\rm DM} h^2 = 0.1099 \pm 0.0062$

• Weakly interacting massive particles (WIMPs) χ are good candidates for cold dark matter (CDM)

The predicted thermal relic abundance naturally explains the observed dark matter abundance: $\Omega_{\chi, {\rm standard}} h^2 \sim 0.1$

Neutralino (LSP); 1st KK mode of the B boson (LKP); etc.

Investigation of early universe using CDM abundance

• The relic abundance of thermal WIMPs is determined by the Boltzmann equation: $\dot{n}_\chi + 3Hn_\chi = -\langle \sigma_{\rm eff} v \rangle (n_\chi^2 - n_{\chi,\rm eq}^2)$

(and the reheat temperature: T_R)

ullet The (effective) cross section $\sigma_{
m eff}$ can be (hopefully) determined from collider and DM detection experiments

We can test the standard CDM scenario and investigate conditions of very early universe: T_R, H, \cdots

• Standard scenario or non-standard scenarios?

[Scherrer; Salati; Rosati; Profumo, Ullio; Pallis; Maisero, Pietroni, Rosati; ...]

Outline

- We provide an approximate analytic treatment that is applicable to low-reheat-temperature scenarios
- Based on the assumption that dark matter is made of thermal WIMPs,
 - we derive the lower bound on the reheat temperature
 - we constrain possible modifications of the Hubble parameter

c.f. Cosmic $p^+, \gamma \Longrightarrow$ Bounds on pre-BBN expansion

[Schelke, Catena, Fornengo, Masiero, Pietroni PRD74 (2006); Donato, Fornengo, Schelke, JCAP0703 (2007)]

- 1. Motivation
- 2. Standard calculation of WIMP relic abundance
- 3. Low-temperature scenario
- 4. Constraints on the very early universe from WIMP dark matter
- **5. Summary** May 21, 2008

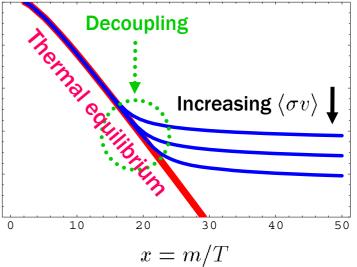
2. Standard calculation of the WIMP relic abundance

[Scherrer, Turner, PRD33(1986); Griest, Seckel, PRD43(1991); ...]

- Conventional assumptions:
 - $\chi = \bar{\chi}$, single production of χ is forbidden
 - Thermal equilibrium was maintained: $T_R(\text{Reheat temp}) > T_F(\text{Freezeout temp})$
- For adiabatic expansion the Boltzmann eq. is

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = -\frac{\langle \sigma v \rangle s}{Hx} (Y_{\chi}^2 - Y_{\chi, \mathrm{eq}}^2),$$
$$Y_{\chi(, \mathrm{eq})} = \frac{n_{\chi(, \mathrm{eq})}}{s}, x = \frac{m_{\chi}}{T}$$

Co-moving number density



• χ decoupled when they were non-relativistic in RD epoch:

$$\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2), \quad n_{\chi, eq} = g_{\chi} (m_{\chi} T/2\pi)^{3/2} e^{-m_{\chi}/T}$$

$$\Omega_{\chi, \text{standard}} h^2 \simeq 0.1 \times \left(\frac{a + 3b/x_F}{10^{-9} \text{ GeV}^{-2}} \right)^{-1} \left(\frac{x_F}{22} \right) \left(\frac{g_*}{90} \right)^{-1/2} \sim \Omega_{\text{DM}} h^2$$

3. Low-temperature scenario

- Assumptions: $T_R \leq T_F$; $Y_\chi(x_0) = 0$, $x_0 = m_\chi/T_R$
- ullet Zeroth order approximation: For $T_R \ll T_F$, χ annihilation is negligible:

$$\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\text{Pl}} e^{-2x} x \left(a + \frac{6b}{x} \right)$$

The solution Y_0 is proportional to the cross section:

- First order approximation:
 - ullet Add a correction term describing annihilation to Y_0 : $Y_1=Y_0+\delta$ $(\delta<0)$
 - ullet As long as $|\delta| \ll Y_0$, the evolution equation for δ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_{\chi} M_{\rm Pl} \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}$$

An analytic expression for δ can be obtained and is proportional to σ^3 May 21, 2008 Mitsuru Kakizaki 6

Resummed ansatz

 We can obtain an excellent analytic formula for $T_R \leq T_F$ through resummation:

$$Y(x) = Y_0 + \delta = Y_0 \left(1 + \frac{\delta}{Y_0}\right)$$

$$\simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

WMAP 0.001

ullet For $|\delta|\gg Y_0$, $Y_{1,r}(x)\simeq -rac{Y_0^2}{\delta}\propto rac{1}{\sigma}$

$$x_0 o x_F$$
 Standard formula

10⁻⁹

 $x_0 = 22$

10⁻¹⁰

Exact

10^8

10⁻⁷

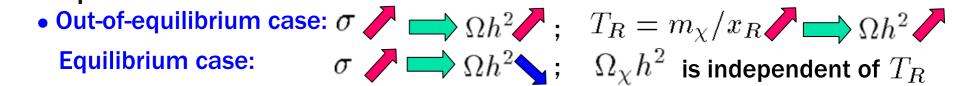
Ständard

At late times, $Y_{1,r}(x \to \infty) =$ $1.3 \sqrt{g_*} m_{\chi} M_{\rm Pl}(a + 3b/x_0)$

May 21, 2008 Mitsuru Kakizaki

10⁻¹¹

4. Constraints on the very early universe from WIMP DM



• Thermal relic abundance:

Assumption:

WIMPs are assumed to be produced in the RD epoch

Requirement that $\Omega_\chi h^2 \simeq 0.1$

Lower bound on the reheat temperature: $T_R > m_\chi/23$



- Various cosmological models predict a non-standard early expansion
 - Predicted WIMP relic abundances are also changed
- Idea:

Once we know $\sigma, \Omega_{\rm DM} h^2$

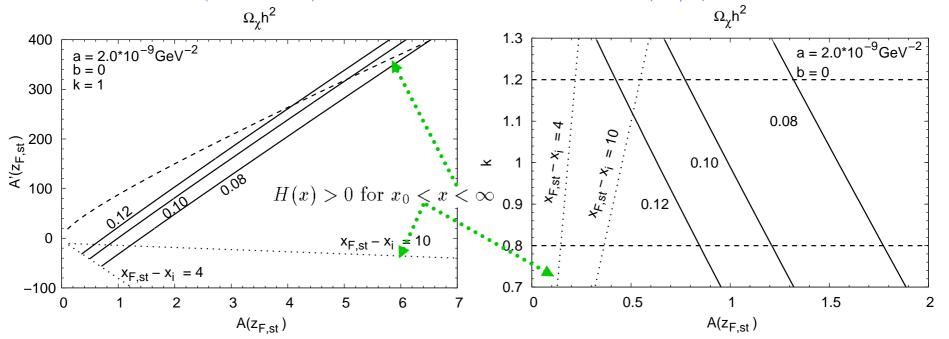
- Constraint on the expansion rate at around WIMP decoupling (within the framework of thermal WIMP production)
- Parametrization: $A(z) = H_{\rm st}(z)/H(z) \,, \quad z \equiv T/m_\chi = 1/x$
- We need to know A(z) only for $z_{\rm BBN} = 10^{-5} 10^{-4} \le z \le z_F \sim 1/20 \ll \mathcal{O}(1)$
 - Taylor expansion of A(z) in powers of $(z-z_{F,\mathrm{st}})$:

$$A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + \frac{1}{2}(z - z_{F,st})^2 A''(z_{F,st})$$

Subject to the BBN limit: $k \equiv A(z \rightarrow z_{\rm BBN}) \simeq 1$

Constraints on modifications of the Hubble parameter

• Case for $A''(z_{F,\mathrm{st}}) = 0$



 x_i : Maximal temperature below which our expansion is valid

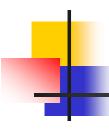
 $\Omega_\chi h^2$ depends on all $H(T_{\rm BBN} < T < T_F)$ Weaker constraints on $H(T_F)$

May 21, 2008 Mitsuru Kakizaki 10

5. Summary

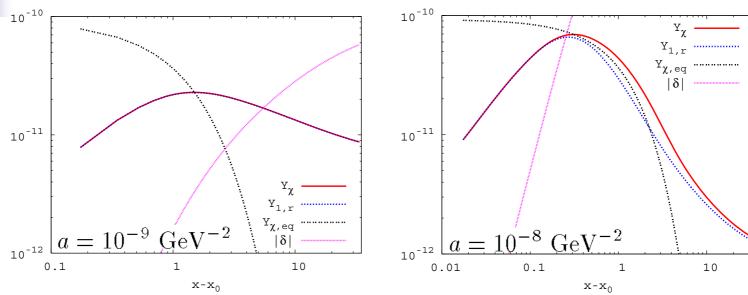
- Using the CDM relic density we can examine very early universe at around $T \sim m_\chi/20 \sim \mathcal{O}(10)~{
 m GeV}$ (well before BBN: $T_{
 m BBN} \sim \mathcal{O}(1)~{
 m MeV}$)
- We find an approximate analytic formula that is valid for all $T_R \leq T_F$

- By requiring $~\Omega_{\chi,{
 m thermal}}h^2=\Omega_{
 m DM}h^2~$, we found the lower bound on the reheat temperature: $T_R>m_\chi/23$
- The sensitivity of $\,\Omega_{\chi, {
 m thermal}} h^2\,\,$ on $H(T_F)$ is weak because $\,\Omega_{\chi, {
 m thermal}} h^2\,\,$ depends on all $H(T_{
 m BBN} < T < T_F)$



Backup slides

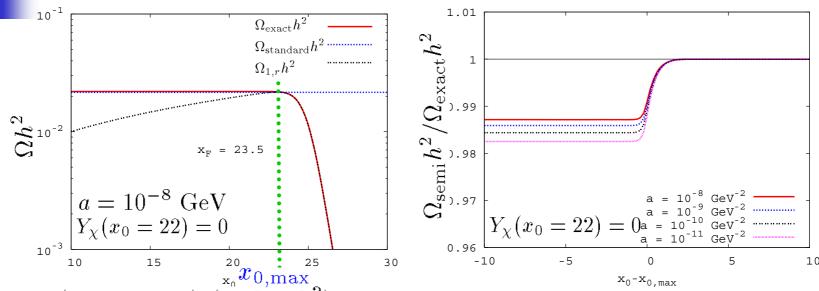
Evolution of solutions



 Y_χ : Exact result, $Y_{1,r}$: Re-summed ansatz, $b=0, \ Y_\chi(x_0=22)=0$

- ullet The re-summed ansatz $Y_{1,r}$ describes the full temperature dependence of the abundance when equilibrium is not reached
- ullet For larger cross section the deviation becomes sizable for $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

Semi-analytic solution



- $Y_{1,r}(x_0,x o\infty)$ $(\propto\Omega_{1,r}^-h^2)$ has a maximum (left)
- New semi-analytic solution can be constructed: $\Omega_{
 m semi} h^2$ (right)

For
$$x_0 > x_{0,\max}$$
 , use $Y_{1,r}(x_0)$; for $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi-analytic solution $\Omega_{\rm semi}h^2$ reproduces the correct final relic density $\Omega_{\rm exact}h^2$ to an accuracy of a few percent