Constraints on the very early universe from thermal WIMP Dark Matter

Mitsuru Kakizaki (Bonn Univ.)

July 27, 2007 @ Karlsruhe Univ.

In collaboration with

- Manuel Drees
- Hoernisa Iminniyaz

Refs:

- PRD73 (2006) 123502 [hep-ph/0603165]
- arXiv:0704.1590 [hep-ph]

Non-baryonic cold dark matter (CDM): $0.8 < \Omega_{
m CDM} h^2 < 0.12 \; (95\% \; {
m CL})$

• Neutral, stable (long-lived) weakly interacting massive particles (WIMPs) $\chi\,$ are good candidates for CDM

• Neutralino (LSP); 1st KK mode of the B boson (LKP); etc.

When WIMPs were in full thermal eq., the relic abundance naturally falls around the observed CDM abundacne: $\Omega_{\chi,{\rm standard}}h^2\sim 0.1$

Investigation of early universe using CDM abundance $\max_{m=10, \mu>0}$

 The relic abundance of thermal WIMPs is determined by the Boltzmann equation:

$$n_{\chi} + 3Hn_{\chi} = -\langle \sigma_{\rm eff} v \rangle (n_{\chi}^2 - n_{\chi,\rm eq}^2)$$

(and the reheat temperature: T_R)

• The (effective) cross section $\sigma_{
m eff}$ can be (hopefully) determined from collider and DM detection experiments

We can test the standard CDM scenario and investigate the conditions of very early universe: T_R, H, \cdots

νμαρ

e.g. SUSY

m_h = 114 GeV

 $\mathbf{m}_{\chi\pm} \models 104 \text{ GeV}$

700-

600

500-

300-

100 200

m₀ (GeV)

- Standard scenario:
 - χ was in chemical eq.
 - $\Omega_{\chi}h^2$ is independent of T_R

•
$$H = \frac{\pi T^2}{M_{\rm Pl}} \sqrt{\frac{g_*}{90}}$$
 (g_* : Rel. dof
July 27, 2007

- Non-standard scenarios:
 - Low reheat temperature
 - Entropy production
 - Modified Hubble parameter PRD(2003); Chung et
 - Non-thermal production
 Mitsuru Kakizaki
- [Scherrer et al., PRD(1985); Salati,PLB(2003); Fernengo et al., PRD(2003); Chung et al., PRD (1999); ...]

Outline

- We provide an approximate analytic treatment that is applicable to low-reheat-temperature scenarios
- Based on the assumption of CDM = thermal WIMP
 - we derive the lower bound on the maximal temperature of RD epoch
 - we constrain possible modifications of the Hubble parameter

c.f. Cosmic $p^+, \gamma \Longrightarrow$ Bounds on pre-BBN expansion

[Schelke, Catena, Fornengo, Masiero, Pietroni PRD74 (2006); Donato, Fornengo, Schelke, JCAP0703 (2007)]

- **1**. Motivation
- 2. Standard calculation of WIMP relic abundance
- **3.** Low-temperature scenario
- 4. Constrains on the very early universe from WIMP dark matter
- **5.** Summary

July 27, 2007

2. Standard calculation of the WIMP relic abundance

[Scherrer, Turner, PRD33(1986); Griest, Seckel, PRD43(1991); ...]

• Conventional assumptions for $~\chi$:

- $\chi=\bar{\chi}$, single production of χ is forbidden
- Thermal equilibrium was maintained

• For adiabatic expansion the Boltzmann eq. is

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = -\frac{\langle \sigma v \rangle s}{Hx} (Y_{\chi}^2 - Y_{\chi,\mathrm{eq}}^2),$$
$$Y_{\chi(\mathrm{,eq})} = \frac{n_{\chi(\mathrm{,eq})}}{s}, x = \frac{m_{\chi}}{T}$$

- During the RD epoch, χ and decoupled when they were non-relativistic:

$$\langle \sigma v \rangle = a + 6b/x + \mathcal{O}(1/x^2), \quad n_{\chi, eq} = g_{\chi} (m_{\chi}T/2\pi)^{3/2} e^{-m_{\chi}/T}$$

$$\square \Omega_{\chi,\text{standard}} h^2 \simeq 0.1 \times \left(\frac{a+3b/x_F}{10^{-9} \text{ GeV}^{-2}}\right)^{-1} \left(\frac{x_F}{22}\right) \left(\frac{g_*}{90}\right)^{-1/2} \sim \Omega_{\text{CDM}} h^2$$
July 27, 2007 Mitsuru Kakizaki 5

3. Low-temperature scenario

• T_R : Reheat temperature

The initial abundance is assumed to be negligible: $Y_{\chi}(x_0) = 0$, $x_0 = \frac{m_{\chi}}{T_R}$

Zeroth order approximation:

 $T_R < T_F \implies \chi$ annihilation is negligible: $\frac{dY_0}{dx} = 0.028 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x} x \left(a + \frac{6b}{x}\right)$ The solution is proportional to the cross section:

At late times,

$$Y_0(x \gg x_0) \simeq 0.014 \ g_{\chi}^2 g_*^{-3/2} m_{\chi} M_{\rm Pl} e^{-2x_0} x_0 \left(a + \frac{6b}{x_0}\right)$$

This solution should be smoothly connected to the standard result

First order approximation

- Add a correction term describing annihilation to Y_0 : $Y_1 = Y_0 + \delta ~(\delta < 0)$
- As long as $|\delta| \ll Y_0\;$, the evolution equation for $\delta\;$ is

$$\frac{d\delta}{dx} = -1.3 \sqrt{g_*} m_\chi M_{\rm PL} \left(a + \frac{6b}{x}\right) \frac{Y_0(x)^2}{x^2}$$

 \Rightarrow The solution is proportional to $\,\sigma^3$

At late times,

$$\delta(x \gg x_0) \simeq -2.5 \times 10^{-4} g_{\chi}^4 g_*^{-5/2} m^3 M_{\rm Pl}^3 e^{-4x_0} x_0 \left(a + \frac{3b}{x_0}\right) \left(a + \frac{6b}{x_0}\right)^2$$

• $|\delta|$ soon dominates over Y_0 for not very small cross section

 $\longrightarrow Y_1$ fails to track the exact solution

July 27, 2007

8

4. Constrains on the very early universe from WIMP DM

Modified expansion rate

Various cosmological models predict a non-standard early expansion

 [e.g. Scherrer et al., PRD(1985); Salati, PLB(2003);
 Fernengo et al., PRD(2003); Chung et al., PRD (1999); ...]

 Predicted WIMP relic abundances are also changed

• When WIMPs were in full thermal equilibrium, in terms of the modification parameter $A(x) = H_{\rm st}(x)/H(x)$ the relic abundance is

$$\Omega_{\chi}h^{2} = 0.1 \left(\frac{I(x_{F})}{8.5 \times 10^{-10} \text{ GeV}^{-2}}\right)^{-1}$$

$$I(x_{F}) = \int_{x_{F}}^{\infty} dx \frac{\sqrt{g_{*}} \langle \sigma v \rangle A(x)}{x^{2}}, \quad x_{F} = \ln \left[\sqrt{\frac{45}{\pi^{5}}} \xi m_{\chi} M_{\text{Pl}} g_{\chi} \frac{\langle \sigma v \rangle A(x)}{\sqrt{xg_{*}}}\right]\Big|_{x=x_{F}}$$

If A(x) = 1, $x_F = x_{F,st}$ and we recover the standard formula

This formula is capable of predicting the final relic density correctly

July 27, 2007

Constrains on modifications of the Hubble parameter

• In terms of $z \equiv T/m_{\chi} = 1/x$ we need to know A(z) only for $z_{BBN} = 10^{-5} - 10^{-4} \le z \le z_F \sim 1/20 \ll \mathcal{O}(1)$ This suggests a parametrization of A(z) in powers of $(z - z_{F,st})$: $A(z) = A(z_{F,st}) + (z - z_{F,st})A'(z_{F,st}) + \frac{1}{2}(z - z_{F,st})^2 A''(z_{F,st})$ subject to the BBN limit: $0.8 \le k \equiv A(z \rightarrow z_{BBN}) \le 1.2$ x_i :Maximal temperature where • Once we know σ_{α, β^2} , we can constrain A(z): the parametrization is valid $a = 2.0*10^{-9} \text{GeV}^{-2}$ b = 0 $a = 2.0*10^{-9} \text{GeV}^{-2}$ 1.2 300 0.08 1.1 002 A'(z_{F,st}) 100 0.10 100 H(x) > 0 for $x_0 <$ 0.12 $x_{F,st} - x_i = 10$ 0 0.8 $x_{F,st} - x_i = 4$ -100 0.7 0.5 0 3 6 7 1 1.5 2 A(z_{F.st}) A(z_{F st}) depends on all $H(T_{BBN} < T < T_F) \longrightarrow$ Larger allowed region for $H(T_F)$ July 27, 2007 Mitsuru Kakizaki 11

- Using the CDM relic density we can examine very early universe around $T \sim m_{\chi}/20 \sim O(10) \text{ GeV}$ (well before BBN $T_{\text{BBN}} \sim O(1) \text{ MeV}$)
- The relic density of thermal WIMPs depends on the reheat temperature T_R and on the Hubble parameter $H(T_{BBN} < T < T_F)$
- By applying $\Omega_{\rm CDM}h^2 = \Omega_{\chi,{\rm thermal}}h^2$, we found the lower bound on the maximal temperature: $T_R > m_\chi/23$
- The sensitivity of $\Omega_{\chi, \text{thermal}} h^2$ on $H(T_F)$ is weak because $\Omega_{\chi, \text{thermal}} h^2$ depends on all $H(T_{\text{BBN}} < T < T_F)$

July 27, 2007

- The re-summed ansatz $Y_{1,r}$ describes the full temperature dependence of the abundance when equilibrium is not reached
- For larger cross section the deviation becomes sizable for $x-x_0\sim 1$, but the deviation becomes smaller for $x\gg x_0$

Semi-analytic solution

• $Y_{1,r}(x_0, x \to \infty) \ (\propto \Omega_{1,r} h^2)$ has a maximum (left)

• New semi-analytic solution can be constructed: $\Omega_{\text{semi}}h^2$ (right)

For $x_0 > x_{0,\max}$, use $Y_{1,r}(x_0)$; for $x_0 < x_{0,\max}$, use $Y_{1,r}(x_{0,\max})$

The semi-analytic solution $\Omega_{\rm semi}h^2$ reproduces the correct final relic density $\Omega_{exact}h^2$ to an accuracy of a few percent