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—CLASS EXERCISES—

1.1 Derivation and Representations of Gamma Matrices

In the lecture you have seen that one way to describe relativistic particles is the Dirac equation,
which uses a set of four matrices which fulfill

{97 = A At =29 (1)

In this exercise we will see why that is and that there are different ways of choosing these v*.

(a)

If we try to “linearise” the Klein Gordon equation (8,0"+m?)i) = 0, we can do a “Schrodinger”-
like ansatz

(iaiai + Bm) Y =10y (2)

Squaring both sides of Eq. should give the Klein-Gordon equation. Show that this leads
to the following requirements for o and 3,

/62:0[12:]15 {ﬂaai}:{aiaaj}zoy Z#.] (3)

Why can’t the a; and § be just numbers and why do they have to be at least of dimension
4 x 47

Show that multiplying Eq. with 3 yields the Dirac equation if we define the Dirac gamma
matrices v, where pu =0, ...,3 as follows,

¥ =8, v =pa’, i=1,2,3. (4)
Show that these fulfill the known anticommutaton relations,
{77} =29""1, (5)
by combining their definitions and properties from Eq. and Eq. .

One possible representation for the v* is the so—called “Dirac Representation”
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where (i = 1,2, 3) is Pauli matrix, 1 denotes the 2 x 2 unit matrix, and 0 is the 2 x 2 matrix
of zeros.

Another possible representation is the so—called “Weyl basis”, which defines ° differently:
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Think about why sometimes the one, sometimes the other representation can be advantageous
to use!

(e) Show that they both fulfill the identity vt = 40#~01

1.2 The Dirac Equation

The Dirac equation is given by
ivH O —mip =0

and its plane wave solutions are
W = we PT

where p# = (E,p), w= N (i)

w is the four-component Dirac spinor which in the Dirac representation can conveniently be de-
composed into two-component spinors ¢ and x. IV is a normalization constant.

(a) Define the conjugate spinor

d(z) = Pi(a)y°

and use the covariant form of the Dirac equation to derive the adjoint Dirac equation
i@,td_)'y# +mp =0
(b) Show that the Dirac probability current j* = ¢y is conserved, i.e. 8,5 = 0.

(c) Use the Dirac equation to find a coupled system of equations for ¢ and x. Use them to find
the “particle spinor” u(p), with E > 0, and the “antiparticle spinor” v(p’) = v(—p), with £ < 0

as follows:
u(p) = N ( 5 ¢) , v(—p) =N <E+m’<> (6)
E+m X

(d) Prove the Dirac equations for the free spinors (p — m)u(p) = 0, (p + m)v(p) =0




