Crash Course in Theoretical Particle Physics
 Prof. Manuel Drees
 Daniel Schmeier

-Class Exercises-

1.1 Derivation and Representations of Gamma Matrices

In the lecture you have seen that one way to describe relativistic particles is the Dirac equation, which uses a set of four matrices which fulfill

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{1}
\end{equation*}
$$

In this exercise we will see why that is and that there are different ways of choosing these γ^{μ}.
(a) If we try to "linearise" the Klein Gordon equation $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \psi=0$, we can do a "Schrödinger"like ansatz

$$
\begin{equation*}
\left(i \alpha_{i} \partial^{i}+\beta m\right) \psi=i \partial_{t} \psi \tag{2}
\end{equation*}
$$

Squaring both sides of Eq. (2) should give the Klein-Gordon equation. Show that this leads to the following requirements for α and β,

$$
\begin{equation*}
\beta^{2}=\alpha_{i}^{2}=\mathbb{1}, \quad\left\{\beta, \alpha_{i}\right\}=\left\{\alpha_{i}, \alpha_{j}\right\}=0, \quad i \neq j \tag{3}
\end{equation*}
$$

(b) Why can't the α_{i} and β be just numbers and why do they have to be at least of dimension 4×4 ?
(c) Show that multiplying Eq. (2) with β yields the Dirac equation if we define the Dirac gamma matrices γ^{μ}, where $\mu=0, \ldots, 3$ as follows,

$$
\begin{equation*}
\gamma^{0}=\beta, \quad \gamma^{i}=\beta \alpha^{i}, \quad i=1,2,3 . \tag{4}
\end{equation*}
$$

Show that these fulfill the known anticommutaton relations,

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1} \tag{5}
\end{equation*}
$$

by combining their definitions and properties from Eq. (3) and Eq. (4).
(d) One possible representation for the γ^{μ} is the so-called "Dirac Representation"

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

where $\sigma^{i}(i=1,2,3)$ is Pauli matrix, $\mathbb{1}$ denotes the 2×2 unit matrix, and 0 is the 2×2 matrix of zeros.
Another possible representation is the so-called "Weyl basis", which defines γ^{0} differently:

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right), \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

Think about why sometimes the one, sometimes the other representation can be advantageous to use!
(e) Show that they both fulfill the identity $\gamma^{\mu, \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$!

1.2 The Dirac Equation

The Dirac equation is given by

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

and its plane wave solutions are

$$
\psi=\omega e^{-i p \cdot x}
$$

where $p^{\mu}=(E, \vec{p}), \omega=N\binom{\phi}{\chi}$.
ω is the four-component Dirac spinor which in the Dirac representation can conveniently be decomposed into two-component spinors ϕ and $\chi . N$ is a normalization constant.
(a) Define the conjugate spinor

$$
\bar{\psi}(x)=\psi^{\dagger}(x) \gamma^{0}
$$

and use the covariant form of the Dirac equation to derive the adjoint Dirac equation

$$
i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=0
$$

(b) Show that the Dirac probability current $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ is conserved, i.e. $\partial_{\mu} j^{\mu}=0$.
(c) Use the Dirac equation to find a coupled system of equations for ϕ and χ. Use them to find the "particle spinor" $u(p)$, with $E>0$, and the "antiparticle spinor" $v\left(p^{\prime}\right) \equiv v(-p)$, with $E<0$ as follows:

$$
\begin{equation*}
u(p)=N\binom{\phi}{\frac{\vec{p} \cdot \vec{\sigma}}{E+m} \phi}, \quad v(-p)=N\binom{\frac{-\vec{p} \cdot \vec{\sigma}}{-E+m} \chi}{\chi} \tag{6}
\end{equation*}
$$

(d) Prove the Dirac equations for the free spinors $(\not p-m) u(p)=0,(\not p+m) v(p)=0$

