Crash Course in Theoretical Particle Physics Prof. Manuel Drees

Daniel Schmeier

-Homework Exercises-

2.4 Fun with equations of motion (continued)

(a) Calculate the equation of motion for a vector field A_{μ} with

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu}$$
(1)

with $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. This equation of motion is called 'Proca' equation. Hint: μ, ν are summed within the Lagrangian and within the Euler-Lagrange-Equations you also sum over an internal index μ within the term $\partial_{\mu}\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}X)}$. This can easily lead to the wrong answer if you are not careful with your index naming! Hence, you better use different indices in your Euler-Lagrange-Equation!

(b) Derive Maxwell's equations without sources from the previous exercise. Remember that light does not have a mass and that one identifies the classical electric and magnetic fields as $E^i = -F^{0i}$ and $\epsilon^{ijk}B^k = -F^{ij}$.

2.5 Current conservation in QED Coupling two fields ψ_i with charge q_i to an electromagnetic field A_{μ} leads to the following (QED) Lagrangian:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{j} \bar{\psi}_{j} (i\partial \!\!\!/ - m_{j} - q_{j} A\!\!\!/) \psi_{j}.$$
⁽²⁾

with X being defined as $\gamma^{\mu}X_{\mu}$ for any four-vector X_{μ} .

1. Show that it is invariant under transformations of the type

$$\psi_i \to e^{i\alpha q_i}\psi_i.$$

for constant α .

2. Show that the corresponding Noether current is

$$-J_N^{\mu} \equiv J_Q^{\mu} = \sum_i q_i \bar{\psi}_i \gamma^{\mu} \psi_i.$$
(3)

- 3. Write down the equations of motion for fermion fields ψ_i and their conjugates $\bar{\psi}_i$ using the Lagrangian (2).
- 4. Using these equations of motion, show that the current J^{μ}_{O} of eq. (3) is conserved, $\partial_{\mu}J^{\mu}_{O} = 0$.
- 5. Is the sum over i in eq. (3) necessary for the current to be conserved? What does this mean?