Crash Course in Theoretical Particle Physics

Prof. Manuel Drees Daniel Schmeier

-CLASS EXERCISES-

2.1 Fun with equations of motion

(a) Calculate the equation of motion for a free scalar field

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2 \tag{1}$$

and show that it reproduces the Klein-Gordon equation!

(b) Calculate the equation of motions for a free Dirac fermion

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi \tag{2}$$

and show that it reproduces the Dirac equations for ψ and $\overline{\psi}!$

2.2 Identifying Particles in the Lagrangian

Fields that appear in the Lagrangian do not necessarily correspond to physically observable particles with a well defined mass! In this exercise we will discuss this and understand the concept of "mass eigenstates". Consider the following Lagrangian

$$\mathcal{L} = \bar{\psi}_1 i \gamma^\mu \partial_\mu \psi_1 + \bar{\psi}_2 i \gamma^\mu \partial_\mu \psi_2 - m_{11} \bar{\psi}_1 \psi_1 - m_{12} (\bar{\psi}_1 \psi_2 + \bar{\psi}_2 \psi_1) - m_{22} \bar{\psi}_2 \psi_2 \tag{3}$$

- (a) Find the equations of motion for ψ_1 and ψ_2 . Do they correspond to free Dirac equations of two particles ψ_1 and ψ_2 ?
- (b) Write the mass terms in Eq. (3) in the form of a matrix \mathcal{M} like $\mathcal{L}_{\mathcal{M}} = -\bar{\psi}\mathcal{M}\psi$ with $\psi = (\psi_1, \psi_2)^T$.
- (c) Diagnoalize \mathcal{L} , that is: find the eigenvalues M_1 and M_2 of \mathcal{M} and use an orthogonal transformation

$$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
(4)

to find a Lagrangian in which no mixed term $m\bar{\chi}_1\chi_2$ occurs.

- (d) Calculate the equations of motion for χ_1 and χ_2 . What do you conclude?
- (e) Imagine the original ψ_1 had an interaction term with a scalar field ϕ of the form $\kappa \phi \bar{\psi}_1 \psi_1$ and ψ_2 did not couple to ϕ . What does this mean for the particles χ_1 and χ_2 ? Which one of them interacts with ϕ ? What does the interaction strength depend on?

2.3 Noether's theorem

Consider the following Lagrangian density with two real scalar fields $\phi_i(x)$ (i = 1, 2)

$$\mathcal{L} = \frac{1}{2} \sum_{i} (\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i} - m^{2} \phi_{i}^{2})$$

- (a) Obtain the Euler-Lagrange equation of motion for the two fields.
- (b) Show that this Lagrangian is invariant under the following transformation

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \rightarrow \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}.$$
 (5)

The 2×2 matrix appearing in this transformation can be interpreted as an element of the group SO(2) of 2-dimensional rotations.

- (c) Invariance under the transformation (5) means that this is a symmetry of the Lagrangian. Obtain the Noether current that corresponds to this symmetry.
- (d) Check that the Noether current is indeed conserved.
- (e) Rewrite the Lagrangian in terms of a complex field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$.
- (f) Rewrite the transformation (5) in terms of the complex field ϕ .
- (g) Find the Noether current for this rewritten transformation. Check that it is the same as above.