

Lecture Outline

- Volcanic Eruption Emission and Ejecta
- Eruption Classifications
- Tectonic Plate Boundaries and Hotspots
- Impact on Global climate
- Effects of gas injection into atmosphere
- Supervolcanoes
- Long term global effects

Volcanic Explosive Index (VEI) VEI = log₁₀(Raised Pyroclastic Material[kg]) – 7

VEI	Description	Plume	Frequency	Examples	last 10,000 years
0	effusive	< 100 m	constant	Kilauea, Piton de la Fournaise	man y
1	gentle	100-1000 m	daily	Stromboli, Nyiragongo (2002)	many
				Galeras (1993), Mount	
2	explosive	1–5 km	weekly	Sinabung (2010)	3477*
				Nevado del Ruiz (1985),	
3	severe	3-15 km	few months	Soufrière Hills (1995)	868
				Mount Pelée (1902),	
4	catacly smic	10-25 km	$\geq 1 \text{ yr}$	Eyjafjallajökull (2010)	421
	1.1			Mount Vesuvius (79 CE),	
5	parox ysmal	20–35 km	≥ 10 yrs	Mount St. Helens (1980)	166
	A	14141		Krakatoa (1883), Mount	
6	colossal	> 30 km	≥ 100 yrs	Pinatubo (1991)	51
		100.000		Thera (Minoan Eruption),	1.5 6550 10 10
	super-colossal	> 40 km	≥ 1,000 yrs	Tambora (1815)	5 (+2 suspected)
				Yellowstone (640,000 BP),	
	mega-colossal	> 50 km	≥ 10,000 yrs	Toba (74,000 BP)	0

Volcanic Emissions and Ejecta

- Tephra
- Pyroclastic Flow
- Lava Flows
- Lahars
- Plume

Tephra

- Pyroclastic fragments classified by size
- Ash particles smaller than 2 mm in diameter
- Lapilli between 2 and 64 mm in diameter
- Volcanic Bombs larger than 64 mm in diameter.

Pyroclastic Flow Pyroclastic Density Current (PDC)

- Superheated gaseous current
- Gravitationally driven
- Temperature < 1300K, Velocity < 700km/h
- Caused by:
- Collapse of the eruption column or lava dome or spineDirectional blast when side of volcano explodes

Lava Flows and Fountains

- Igneous rock expelled from a volcano during an eruption
- Can also be caused by increase in crustal compression stress
- Chemical composition determines viscosity and temperature
- Classified into three chemical types
- i. Felsic (rich in SiO₂)
- ii. Andesitic (rich in Mg and Fe)

Mauna Ulu eruption , Kilauea Volcano, Hawa

iii. Mafic (low in SiO₂)

Lahars

- Contraction of "Belahar", Indonesian for "Volcanic Mudflow"
- Debris flow consisting of pyroclastic material and water
- Can travel up to 100km/h and for up to 300km
- Follows the local topography for direction, mostly through river valleys
- Occur in tropical or glacial regions
- Snow and glacier melt or rainfall and typhoons contribute to the water content

Galunggung, Indonesia

Eruption column

 Hot volcanic ash emitted by an explosive eruption

Plume

- Height < 10km, plume is washed out by rainfall
- > 10km, penetrates stratosphere with ash and volcanic gases.

Classi	fications of Eruptions	
	VEI	
 Hawaiian 	0-1	
 Strombolian 	1-2	
 Vulcanian 	2-3	
 Peléan 	3-4	
 Plinian * 	4 and above	
*Includes Ultra-Pli	nian and Supervolcanic	
	Nora Strotjohann - Maike Hansen - Victor Rufus 10	

Hawaiian Eruption

Mount St. Helens, US

- VEI of 0 − 1
- Effusive eruptions of very fluid basaltic lava flows
- Plume < 1000m, comprising mostly ash
- Typical eruptions from the Hawaiian Islands Hotspot

Strombolian Eruption

- VEI of 1 − 2
- Driven by gas bubbles created by a decrease in crustal compression stress
- Gentle eruptions with Plume consisting of all types of tephra, < 3 km

Yasur Volcano, Vanuatu

Vulcanian Eruption

- VEI of 2 3
- More explosive than Strombolian eruption
- Tephra dispersed over wide area, ash volcanic cone and lava flows
- Plume < 10 km

Peléan Eruption

- VEI 3 4
- Avalanches of glowing hot ash flows
- Tephra deposits less widespread than Vulcanian and Plinian eruptions
- Plume < 20 km

Plinian Eruption

- VEI 4 and above
- Cataclysmic explosions
- Plumes up to 45km in height and can penetrate the stratosphere
- Large amount of tephra ejected

Redoubt Volcano, Kenai Peninsula, Alaska, USA

Felsic lava flow

Where volcanoes systems occur?

- Divergent Plate Boundaries
- Convergent Plate Boundaries
- Hotspots

Divergent Plate Boundaries

- Volcanoes occurs predominantly within oceanic regions
- Iceland, best example of diverging oceanic plates breaching sea level

Divergent Plate Boundaries

• Eyjafjallajökull, Iceland

Convergent Plate Boundaries

- Oceanic Oceanic Subduction Zone
- Creates Volcanic Arcs

Convergent Plate Boundaries

- Mt Vesuvius (erupted 79 AD), VEI=4 Apennines Subduction System
 Pinatubo (1991) VEI=6, formed by the Phillipine Mobile Belt sliding over the Eurasian Plate along the Manila Trench to the west
- Lake Toba (74 000 BP) VEI=8, part of the Sunda Arc, a result of the northeasterly movement of the Indo-Australian Plate which is sliding under the eastward-moving Eurasian Plate
- Mount Tambora (1815) VEI=7, on the island of Sumbawa, Indonesia, is flanked both to the north and south by oceanic crust. This raised Mount Tambora as high as 4,300 m (14,100 ft), formerly one of the tallest peaks in Indonesian archipelago.

ora Strotjohann - Maike Hansen - Victor Rufu

26

VEI	Description	Plume	Frequency	Examples	Occurrences in last 10,000 years*
0	effusive	< 100 m	constant	Kilauea, Piton de la Fournaise	many
1	gentle	100–1000 m	daily	Stromboli, Nyiragongo (2002) Galeras (1993), Mount	many
2	explosive	1–5 km	weekly	Sinabung (2010) Nevado del Ruiz (1985),	3477*
3	severe	3–15 km	few months	Soufrière Hills (1995) Mount Pelée (1902),	868
4	cataclysmic	1025 km	≥ 1 yr	Eyjafjallajökull (2010) Mount Vesuvius (79 CE),	421
5	parox ysmal	20–35 km	≥ 10 yrs	Mount St. Helens (1980) Krakatoa (1883), Mount	166
6	colossal	> 30 km	$\geq 100 \text{ yrs}$	Pinatubo (1991) Thera (Minoan Eruption),	51
	super-colossal	> 40 km	\geq 1,000 yrs	Tambora (1815) Yellowstone (640,000 BP),	5 (+2 suspected)
1	mega-colossal	> 50 km	≥ 10,000 yrs	Toba (74,000 BP)	0

٦

Γ

Sulfur Acid Aerosols

Aerosol = liquid/solid particle that floats in gas

- sulfur + water \rightarrow sulfur acid (70:30)
- Icy or liquid spheres with d~500 $\rm nm$
- solar radiation is absorbed, scattered or reflected → increased albedo
- Slowly settle down during the next 1-3 years

38

- Natural balance disturbed by human-made chlorofluorocarbons (CFC)
- Volcanic aerosols increase impact of CFCs

Nora Strotiohann - Maike Hansen - Victor Rufus

- Pinatubo: ozone depletion by 50% over Antarctica
- Recovers within some years

Super-Volcanoes

- Volcanoes that erupt more than 1 000 km³ of tephra (pumice and ash) in a single event
- Eruptions 100 times stronger than normal eruptions
- VEI > 7

Consequences of a Super-eruption

- Volcanic ash covers a large part of a continent
- Climatic changes: Aerosols and fallout in atmosphere for up to six years → atmosphere reflects solar radiation back and absorbs heat
 - → cooling of 3-5K for Toba-like eruption
 - \rightarrow Volcanic winter

56

Conclusion and Findings

- Volcanic Eruption Emission and Ejecta
- Eruption Classifications
- Tectonic Plate Boundaries and Hotspots
- Impact on Global climate of Plinian eruptions of VEI>5
- Global cooling (eg. Pinatubo of 0.2K for approx. 3 yr)
- Complexity of climate systems, limited predictability
- VEI >7 Supervolcanoes
- Significant related climate changes
- Expected global cooling (3-5K for approx. >4 yr)

Nora Strotjohann - Maike Hansen - Victor Rufus

"The bright sun was extinguish'd and the stars Did wander darkling in the eternal space, Rayless, and pathless, and the icy earth Swung blind and blackening in the moonless air; Morn came and went - and came, and brought no day..."

A section from "Darkness" by Lord Byron, written in June 1816 on the shores of Lake Geneva in the midst of the "Year without Summer", 14 months after the great eruption of the Tambora volcano in Indonesia.

Nora Strotjohann - Maike Hansen - Victor Rufus